思路


二叉搜索树的插入

TreeNode InsertRec(rootNode, key) =

    if rootNode == NULL, return new Node(key)

    if key >= rootNode.data, rootNode.rightChild = InsertRec(rootNode.rightChild, key)

    if Key < rootNode.data, rootNode.leftChild = InsertRec(rootNode.leftChild, key)

Context is: currentNode的reference 和要插入的key.

把key插入一个以rootNode为根的子树中去

二叉搜索树的删除

TreeNode DeleteRec(rootNode, key) =

    if rootNode == NULL, return rootNode

    if key >= rootNode.data, rootNode.rightChild = DeleteRec(rootNode.rightChild, key)

    if Key < rootNode.data, rootNode.leftChild = DeleteRec(rootNode.leftChild, key)

Context is: currentNode的reference 和要删除的key.

把key从一个以rootNode为根的子树中删去

在base case里,

  1. 如果是叶子节点返回空即可,
  2. 如果是单子节点,如果左子为空就返回右子。如果右子为空,就返回左子。
  3. 如果被删节点有两个孩子,则组要借助util找到中序遍历的后继节点, take 其值,然后再递归删除successor节点。

实现


        /// <summary>
/// insert record to BST recursively
/// </summary>
/// <param name="root">current root node</param>
/// <param name="key">the value of the element to be inserted</param>
public TreeNode<T> InsertRec(TreeNode<T> rootNode, T key)
{
if (rootNode == null)
{
rootNode = new TreeNode<T>();
rootNode.data = key;
return rootNode;
} if (key.CompareTo(rootNode.data) < )
{
rootNode.leftChild = InsertRec(rootNode.leftChild, key);
}
else
{
rootNode.rightChild = InsertRec(rootNode.rightChild, key);
} return rootNode;
} public void DeleteKey(T key)
{
this.root = DeleteRec(root, key);
} public void InsertKey(T key)
{
this.root = InsertRec(root, key);
} /// <summary>
/// Delete record from BST recursively
/// </summary>
/// <param name="rootNode">root node</param>
/// <param name="Key">value of the element</param>
/// <returns></returns>
public TreeNode<T> DeleteRec(TreeNode<T> node, T key)
{
if (node == null)
{
return null;
} if (key.CompareTo(node.data) < )
{
node.leftChild = DeleteRec(node.leftChild, key);
}
else if (key.CompareTo(node.data) > )
{
node.rightChild = DeleteRec(node.rightChild, key);
}
else // find the node, node is the one to be deleted
{
if (node.leftChild == null)
{
return node.rightChild;
}
else if (node.rightChild == null)
{
return node.leftChild;
}
else
{
// need to handle the root?
T value = GetMinValue(node);
node.data = value;
node.rightChild = DeleteRec(node.rightChild, value);
}
} return node;
} private T GetMinValue(TreeNode<T> node)
{
if (node == null)
{
throw new Exception("node is null.");
} if (node.rightChild != null)
{
TreeNode<T> temp = node.rightChild;
while (temp.leftChild != null)
{
temp = temp.leftChild;
} return temp.data;
}
else
{
throw new Exception("successor node is not found");
}
}

二叉搜索树(BST)的插入和删除递归实现的更多相关文章

  1. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历   二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...

  2. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...

  3. C++版 - 剑指offer 面试题24:二叉搜索树BST的后序遍历序列(的判断) 题解

    剑指offer 面试题24:二叉搜索树的后序遍历序列(的判断) 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true.否则返回false.假设输入的数组的任意两个 ...

  4. 萌新笔记之二叉搜索树(BST)

    前言,以前搞过线段树,二叉树觉得也就那样= =.然后数据结构的课也没怎么听过,然后下周期中考... 本来以为今天英语考完可以好好搞ACM了,然后这个数据结构期中考感觉会丢人,还是好好学习一波. 二叉搜 ...

  5. 给定一个二叉搜索树(BST),找到树中第 K 小的节点

    问题:给定一个二叉搜索树(BST),找到树中第 K 小的节点. 出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家. 考察点: 1. 基础数据结构的理解和编码能力 2.  递归使用 参考答案 ...

  6. 二叉搜索树-php实现 插入删除查找等操作

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

  7. 二叉搜索树 (BST) 的创建以及遍历

    二叉搜索树(Binary Search Tree) : 属于二叉树,其中每个节点都含有一个可以比较的键(如需要可以在键上关联值), 且每个节点的键都大于其左子树中的任意节点而小于右子树的任意节点的键. ...

  8. 二叉搜索树(BST)学习笔记

    BST调了一天,最后遍历参数错了,没药救了-- 本文所有代码均使用数组+结构体,不使用指针! 前言--BFS是啥 BST 二叉搜索树是基于二叉树的一种树,一种特殊的二叉树. 二叉搜索树要么是一颗空树, ...

  9. 二叉搜索树(BST)

    (第一段日常扯蛋,大家不要看)这几天就要回家了,osgearth暂时也不想弄了,毕竟不是几天就能弄出来的,所以打算过完年回来再弄.这几天闲着也是闲着,就掏出了之前买的算法导论看了看,把二叉搜索树实现了 ...

  10. 数据结构---二叉搜索树BST实现

    1. 二叉查找树 二叉查找树(Binary Search Tree),也称为二叉搜索树.有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一 ...

随机推荐

  1. background-size cover和contain的用法详解

    我们还可以通过background-size来控制背景图片的尺寸. background-size有几个属性值,常用的是cover和contain.那么background-size:cover和co ...

  2. win10安装配置nodejs

    下载node 官网下载node 接下来在命令提示符里(win+R)输入node -v和npm -v,如图所示,表示安装完成.   测试,   配置node 在nodejs文件目录下,新建文件夹node ...

  3. EasyUI的textbox的disable ,readonly 用法

    EasyUI的textbox,如果用了disable, 那么提交时,后台mvc controller是取不到值的, 如果用了Readonly, textbox的样式又没有变化, 让人一眼就感知到哪些是 ...

  4. TCP三次握手的思考?

    大家都知道TCP有三次握手的过程,今天我就仔细想了想为什么TCP要有三次握手 先贴一张三次握手的示意图,说明一点是在三次握手中A是在第二次握手后申请缓存资源,B是在第一次握手后申请. 其实这个问题就是 ...

  5. 在Linux和Windows之间的远程控制的实现

    主要开发工作用Linux,邮件和文档等主要在Windows,两者之间经常需要传输数据,两台主机都必须同时运行着. 但是,通常来说,它们需要同时准备两套显示器.鼠标和键盘,既占地方又不够方便. 远程控制 ...

  6. 搜索引擎中index、attribute和summary概念

    index:倒排索引 attribute: 正排索引 summary:数据集合,用于数据结果展示.

  7. day_41_mysql

    学习目标 学习目标 01. 数据库的介绍 02. 数据库的类型 关系型数据库(RDBMS) 非关系型数据库(NoSQL) 02.1 关系型数据库核心元素 03. MySQL的基本介绍 04. 常用入门 ...

  8. implode() 数组元素组合函数

    定义和用法 implode() 函数把数组元素组合为一个字符串. 语法:implode(separator,array); 说明 虽然 separator 参数是可选的.但是为了向后兼容,推荐您使用使 ...

  9. asp解码.net传参

    get传参时 asp默认使用gbk解码?了解的朋友指点下,谢谢 .net向asp传参时注意urlencode加密编码使用gb2312 附:任何语言的数据交互都要确保接收双方的编码一致

  10. myBatis xml if、where、if-else?、foreach 心得

    MyBatis 的强大特性之一便是它的动态 SQL.如果你有使用 JDBC 或其它类似框架的经验,你就能体会到根据不同条件拼接 SQL 语句的痛苦.例如拼接时要确保不能忘记添加必要的空格,还要注意去掉 ...