In this post, I will summarise several topologies established on the product spaces of \(\mathbb{R}\), i.e. \(\mathbb{R}^n\), \(\mathbb{R}^{\omega}\) and \(\mathbb{R}^J\), as well as their relationships.

Topologies on product spaces of \(\mathbb{R}\)

  1. Topology induced from the euclidean metric \(d\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    d(\vect{x}, \vect{y}) = \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
    \]
  2. Topology induced from the square metric \(\rho\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    \rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i}.
    \]
  3. Product topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\) and only a finite number of them are not equal to \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the product topology on \(\mathbb{R}^{\omega}\) can be constructed.

  4. Box topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the box topology on \(\mathbb{R}^{\omega}\) can be constructed.

  5. Uniform topology on \(\mathbb{R}^J\): it is induced by the uniform metric \(\bar{\rho}\) on \(\mathbb{R}^J\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^J\),
    \[
    \bar{\rho}(\vect{x}, \vect{y}) = \sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \}
    \]
    with \(\bar{d}\) being the standard bounded metric on \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the uniform topology on \(\mathbb{R}^{\omega}\) can be obtained.

    When \(J = n\), the topology induced from the metric \(\bar{\rho}\) on \(\mathbb{R}^n\) is equivalent to the topology induced from the square metric \(\rho\).

  6. Topology induced from the metric \(D\) on \(\mathbb{R}^{\omega}\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^{\omega}\),
    \[
    D(\vect{x}, \vect{y}) = \sup_{i \in \mathbb{Z}_+} \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\},
    \]
    which is transformed from the uniform metric \(\bar{\rho}\) by suppressing its high frequency component.

    Specifically, when \(J = n\), the topology induced from the metric \(D\) is equivalent to the topology induced from the metric \(\bar{\rho}\) and hence is also equivalent to the topology induced from the square metric \(\rho\).

N.B. In the definitions of product topology and box topology for \(\mathbb{R}^J\) as above, the openness of \(U_{\alpha}\) in \(\mathbb{R}\) is with respect to the standard topology on \(\mathbb{R}\), which does not require a metric to be induced from but only depends on the order relation on \(\mathbb{R}\).

Relationships between topologies on product spaces of \(\mathbb{R}\)

According to Theorem 20.3 and Theorem 20.4, the following points about the relationships between topologies on product spaces of \(\mathbb{R}\) are summarised.

  1. On \(\mathbb{R}^n\): Topology induced from \(\rho\) \(\Leftrightarrow\) Uniform topology induced from \(\bar{\rho}\) \(\Leftrightarrow\) Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\Leftrightarrow\) Box topology.
  2. On \(\mathbb{R}^{\omega}\): Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
  3. On \(\mathbb{R}^J\): Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.

It can be seen that the finite dimensional Euclidean space \(\mathbb{R}^n\) has the most elegant property, where all topologies are equivalent.

Topologies on product spaces of $\mathbb{R}$ and their relationships的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. 两个1/x类的广义函数

    [转载请注明出处]http://www.cnblogs.com/mashiqi 2017/04/15 1.$\text{p.v.}\,\frac{1}{x}$ 因为$(x \ln x - x)' = ...

  4. parallelogram

    The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...

  5. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  6. 【读书笔记】:MIT线性代数(5):Four fundamental subspaces

    At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...

  7. The Integers and the Real Numbers

    以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統.其實我們已經用了很多,非正式地,接下來我們會正式地討論他們. 要 建構 實數系統的一個方法就是利用公理跟集合論來建構 ...

  8. Orthogonal Convolutional Neural Networks

    目录 概 主要内容 符号说明 的俩种表示 kernel orthogonal regularization orthogonal convolution Wang J, Chen Y, Chakrab ...

  9. If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely reflect the essential parts of the product, or if the relationship between organizations do not reflect the r

    https://en.wikipedia.org/wiki/Conway%27s_law

随机推荐

  1. ZJOI 2019 游记

    一轮 现在才知道大家都写了2333,现在补上不晚吧. Day 0 跟Crossing打了一路的王者,丝毫没有困意.颁奖仪式看到rank 1 又是xj的zyz,QWQ.被冯缘的热情四射的演讲给吓到了.然 ...

  2. CentOS安装glibc-2.14

    CentOS安装glibc-2.14   到http://ftp.gnu.org/gnu/glibc/下载glibc-2.14.tar.gz wget https://ftp.gnu.org/gnu/ ...

  3. WAMP中的MySQL设置用户、密码 及 phpmyadmin的配置

    打开localhost和phpadmin时注意是否改过端口(这两个的默认端口是80) 初始用户名:root   密码为空 改密后使用新密码. WAMP中的 mysql设置密码(默认密码为空)及 php ...

  4. C#调用Java的WebService添加SOAPHeader验证

    C#调用Java的WebService添加SOAPHeader验证(2) 1.问题描述 调用的Java的webservice string Invoke(string func, string req ...

  5. python的数据类型及运用

    int: 主要方法:a.bit.length()———将a转化为二进制的最小位数: bool: false/True str——>bool: s='空'——>false s=“非空”——& ...

  6. Hbase 客户端Scan

    Hbase 客户端Scan 标签(空格分隔): Hbase HBase扫描操作Scan 1 介绍 扫描操作的使用和get()方法类似.同样,和其他函数类似,这里也提供了Scan类.但是由于扫描工作方式 ...

  7. Python——built-in module Help: math

    Help on built-in module math: NAME math DESCRIPTION This module is always available. It provides acc ...

  8. 【ShaderToy】画一个球体

    嗯,其实渲染球体,可以看做就是一个2d圆形图案+渲染光泽的函数. 定义球体结构——半径,球心坐标 struct Sphere { vec3 center; float radius; };edzx- ...

  9. rem是怎么计算的(转载)

    「rem」是指根元素(root element,html)的字体大小,从遥远的 IE6 到版本到 Chrome 他们都约好了,根元素默认的 font-size 都是 16px. rem是通过根元素进行 ...

  10. Linux二进制安装apache2.4.25

    Linux二进制安装apache2.4.25 安装环境:CentOS 6.2 先检查是否安装了Apache 如通是通过rpm包安装的话直接用下面的命令:rpm -q httpd 也可以使用如下两种方法 ...