In this post, I will summarise several topologies established on the product spaces of \(\mathbb{R}\), i.e. \(\mathbb{R}^n\), \(\mathbb{R}^{\omega}\) and \(\mathbb{R}^J\), as well as their relationships.

Topologies on product spaces of \(\mathbb{R}\)

  1. Topology induced from the euclidean metric \(d\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    d(\vect{x}, \vect{y}) = \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
    \]
  2. Topology induced from the square metric \(\rho\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
    \[
    \rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i}.
    \]
  3. Product topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\) and only a finite number of them are not equal to \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the product topology on \(\mathbb{R}^{\omega}\) can be constructed.

  4. Box topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the box topology on \(\mathbb{R}^{\omega}\) can be constructed.

  5. Uniform topology on \(\mathbb{R}^J\): it is induced by the uniform metric \(\bar{\rho}\) on \(\mathbb{R}^J\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^J\),
    \[
    \bar{\rho}(\vect{x}, \vect{y}) = \sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \}
    \]
    with \(\bar{d}\) being the standard bounded metric on \(\mathbb{R}\).

    Specifically, when \(J = \mathbb{Z}_+\), the uniform topology on \(\mathbb{R}^{\omega}\) can be obtained.

    When \(J = n\), the topology induced from the metric \(\bar{\rho}\) on \(\mathbb{R}^n\) is equivalent to the topology induced from the square metric \(\rho\).

  6. Topology induced from the metric \(D\) on \(\mathbb{R}^{\omega}\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^{\omega}\),
    \[
    D(\vect{x}, \vect{y}) = \sup_{i \in \mathbb{Z}_+} \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\},
    \]
    which is transformed from the uniform metric \(\bar{\rho}\) by suppressing its high frequency component.

    Specifically, when \(J = n\), the topology induced from the metric \(D\) is equivalent to the topology induced from the metric \(\bar{\rho}\) and hence is also equivalent to the topology induced from the square metric \(\rho\).

N.B. In the definitions of product topology and box topology for \(\mathbb{R}^J\) as above, the openness of \(U_{\alpha}\) in \(\mathbb{R}\) is with respect to the standard topology on \(\mathbb{R}\), which does not require a metric to be induced from but only depends on the order relation on \(\mathbb{R}\).

Relationships between topologies on product spaces of \(\mathbb{R}\)

According to Theorem 20.3 and Theorem 20.4, the following points about the relationships between topologies on product spaces of \(\mathbb{R}\) are summarised.

  1. On \(\mathbb{R}^n\): Topology induced from \(\rho\) \(\Leftrightarrow\) Uniform topology induced from \(\bar{\rho}\) \(\Leftrightarrow\) Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\Leftrightarrow\) Box topology.
  2. On \(\mathbb{R}^{\omega}\): Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
  3. On \(\mathbb{R}^J\): Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.

It can be seen that the finite dimensional Euclidean space \(\mathbb{R}^n\) has the most elegant property, where all topologies are equivalent.

Topologies on product spaces of $\mathbb{R}$ and their relationships的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. 两个1/x类的广义函数

    [转载请注明出处]http://www.cnblogs.com/mashiqi 2017/04/15 1.$\text{p.v.}\,\frac{1}{x}$ 因为$(x \ln x - x)' = ...

  4. parallelogram

    The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...

  5. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  6. 【读书笔记】:MIT线性代数(5):Four fundamental subspaces

    At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...

  7. The Integers and the Real Numbers

    以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統.其實我們已經用了很多,非正式地,接下來我們會正式地討論他們. 要 建構 實數系統的一個方法就是利用公理跟集合論來建構 ...

  8. Orthogonal Convolutional Neural Networks

    目录 概 主要内容 符号说明 的俩种表示 kernel orthogonal regularization orthogonal convolution Wang J, Chen Y, Chakrab ...

  9. If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely reflect the essential parts of the product, or if the relationship between organizations do not reflect the r

    https://en.wikipedia.org/wiki/Conway%27s_law

随机推荐

  1. Redis的删除机制、持久化 主从

    转: Redis的删除机制.持久化 主从 Redis的使用分两点: 性能如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存.这样,后面的请求就去缓存中读取 ...

  2. 虚拟机中使用centos7搭建ftp服务器

    应用场景 本地windows作为客户端,虚拟机CentOS7作为服务器端,搭建FTP服务器,本地访问虚拟机实现文件的上传下载.如何在虚拟机安装centos7就不在赘述. 1.在centos7上安装vs ...

  3. SpringBoot注册Windows服务和启动报错的原因

    SpringBoot注册Windows服务和启动报错的原因 Windows系统启动Java程序会弹出黑窗口.黑窗口有几点不好.首先它不美观:其次容易误点导致程序关闭:但最让我匪夷所思的是:将鼠标光标选 ...

  4. 分布式协调服务Zookeeper集群之ACL篇

    分布式协调服务Zookeeper集群之ACL篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.zookeeper ACL相关知识概览 1>.zookeeper官方文档(h ...

  5. MongoDB分组查询,聚合查询,以及复杂查询

    准备数据 from pymongo import MongoClient import datetime client=MongoClient('mongodb://localhost:27017') ...

  6. H5_0008:链接分享图片和判断平台

    <!--分享图片--><div id="share_img" style="display:none;"><img class=& ...

  7. 一段充满bug的R程序,慎入 ...

    twitter的AnomalyDetection  官网效果图如下: 尝试写了下面这个R程序: get_specify_df <- function(start_ts,stop_ts,categ ...

  8. Qt快速入门第三版下载

    找了半天才找到一个靠谱的: http://www.ddooo.com/softdown/111665.htm

  9. docker学习------swarm集群虚机异常关机,node状态为down

    1.因昨天虚机异常关闭,导致今天上去查看时,node节点状态显示为down 2.查了些相关资料,找到处理办法(因我的节点没有任何数据,所以直接对其进行清除) docker swarm leave -- ...

  10. 【ARC 063F】Snuke's Coloring 2

    Description There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper ...