Topologies on product spaces of $\mathbb{R}$ and their relationships
In this post, I will summarise several topologies established on the product spaces of \(\mathbb{R}\), i.e. \(\mathbb{R}^n\), \(\mathbb{R}^{\omega}\) and \(\mathbb{R}^J\), as well as their relationships.
Topologies on product spaces of \(\mathbb{R}\)
- Topology induced from the euclidean metric \(d\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
\[
d(\vect{x}, \vect{y}) = \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
\] - Topology induced from the square metric \(\rho\) on \(\mathbb{R}^n\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^n\),
\[
\rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i}.
\] Product topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\) and only a finite number of them are not equal to \(\mathbb{R}\).
Specifically, when \(J = \mathbb{Z}_+\), the product topology on \(\mathbb{R}^{\omega}\) can be constructed.
Box topology on \(\mathbb{R}^J\): its basis has the form \(\vect{B} = \prod_{\alpha \in J} U_{\alpha}\), where each \(U_{\alpha}\) is an open set in \(\mathbb{R}\).
Specifically, when \(J = \mathbb{Z}_+\), the box topology on \(\mathbb{R}^{\omega}\) can be constructed.
Uniform topology on \(\mathbb{R}^J\): it is induced by the uniform metric \(\bar{\rho}\) on \(\mathbb{R}^J\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^J\),
\[
\bar{\rho}(\vect{x}, \vect{y}) = \sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \}
\]
with \(\bar{d}\) being the standard bounded metric on \(\mathbb{R}\).Specifically, when \(J = \mathbb{Z}_+\), the uniform topology on \(\mathbb{R}^{\omega}\) can be obtained.
When \(J = n\), the topology induced from the metric \(\bar{\rho}\) on \(\mathbb{R}^n\) is equivalent to the topology induced from the square metric \(\rho\).
Topology induced from the metric \(D\) on \(\mathbb{R}^{\omega}\), where for all \(\vect{x}, \vect{y} \in \mathbb{R}^{\omega}\),
\[
D(\vect{x}, \vect{y}) = \sup_{i \in \mathbb{Z}_+} \left\{ \frac{\bar{d}(x_i, y_i)}{i} \right\},
\]
which is transformed from the uniform metric \(\bar{\rho}\) by suppressing its high frequency component.Specifically, when \(J = n\), the topology induced from the metric \(D\) is equivalent to the topology induced from the metric \(\bar{\rho}\) and hence is also equivalent to the topology induced from the square metric \(\rho\).
N.B. In the definitions of product topology and box topology for \(\mathbb{R}^J\) as above, the openness of \(U_{\alpha}\) in \(\mathbb{R}\) is with respect to the standard topology on \(\mathbb{R}\), which does not require a metric to be induced from but only depends on the order relation on \(\mathbb{R}\).
Relationships between topologies on product spaces of \(\mathbb{R}\)
According to Theorem 20.3 and Theorem 20.4, the following points about the relationships between topologies on product spaces of \(\mathbb{R}\) are summarised.
- On \(\mathbb{R}^n\): Topology induced from \(\rho\) \(\Leftrightarrow\) Uniform topology induced from \(\bar{\rho}\) \(\Leftrightarrow\) Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\Leftrightarrow\) Box topology.
- On \(\mathbb{R}^{\omega}\): Topology induced from \(D\) \(\Leftrightarrow\) Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
- On \(\mathbb{R}^J\): Product topology \(\subsetneq\) Uniform topology induced from \(\bar{\rho}\) \(\subsetneq\) Box topology.
It can be seen that the finite dimensional Euclidean space \(\mathbb{R}^n\) has the most elegant property, where all topologies are equivalent.
Topologies on product spaces of $\mathbb{R}$ and their relationships的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- 两个1/x类的广义函数
[转载请注明出处]http://www.cnblogs.com/mashiqi 2017/04/15 1.$\text{p.v.}\,\frac{1}{x}$ 因为$(x \ln x - x)' = ...
- parallelogram
The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 【读书笔记】:MIT线性代数(5):Four fundamental subspaces
At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...
- The Integers and the Real Numbers
以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統.其實我們已經用了很多,非正式地,接下來我們會正式地討論他們. 要 建構 實數系統的一個方法就是利用公理跟集合論來建構 ...
- Orthogonal Convolutional Neural Networks
目录 概 主要内容 符号说明 的俩种表示 kernel orthogonal regularization orthogonal convolution Wang J, Chen Y, Chakrab ...
- If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely reflect the essential parts of the product, or if the relationship between organizations do not reflect the r
https://en.wikipedia.org/wiki/Conway%27s_law
随机推荐
- wordpress文章链接怎么把默认的别名改成id形式和伪静态设置
别名默认是文章标题,打不开,改成英文形式可以打开,但这样很不方便,还有可能重复.怎么改成按文章id自动生成相应链接呢 找到设置---固定链接----把默认的日期和名称型改成自定义结构把末尾的%post ...
- python2 配置环境变量
复习 '''重点:1.进制转换:二进制 与 十六进制2.内存分布:栈区 与 堆区 # 124810101001110111 => 2a77abf1 => 1010101111110001 ...
- java基础-容器-Set
Set:set不存重复元素,如果是使用set存储java预定义的Integer,String等类型会很简单,如果是存储自定义类型的数据类型,就必须要重新定义equals()方法以确保set中保存的对象 ...
- APICloud学习第二天——操作云数据库
//连接apicloud云数据库 var model=api.require('model'); model.config({ appId: 'A6008558346855', appKey: '60 ...
- DirectX11--实现一个3D魔方(3)
前言 (2019/1/9 09:23)上一章我们主要讲述了魔方的旋转,这个旋转真是有毒啊,搞完这个部分搭键鼠操作不到半天应该就可以搭完了吧... (2019/1/9 21:25)啊,真香 有人发这张图 ...
- [转载]再谈PostgreSQL的膨胀和vacuum机制及最佳实践
本文转载自 www.postgres.cn 下的文章: 再谈PostgreSQL的膨胀和vacuum机制及最佳实践http://www.postgres.cn/news/viewone/1/390 还 ...
- windows的WSl安装mysql数据库以及操作数据库
1.更新 sudo apt-get update sudo apt-get upgrade 2.安装mysql sudo apt-get install mysql-server 3.开启服务 sud ...
- SQL数字型注入代码审计
数字型注入 SQL注入攻击,简称注入攻击,是发生于应用程序与数据库层的安全漏洞. 简而言之,是在输入的字符串之中注入sql指定,在设计不良的程序当中忽略了检查,那么这些注入进去的指令就会被数据库服务器 ...
- ccf 201503-5 最小花费 这题交上去只有10分嗨!求大佬的题解啊
问题描述 C国共有n个城市.有n-1条双向道路,每条道路连接两个城市,任意两个城市之间能互相到达.小R来到C国旅行,他共规划了m条旅行的路线,第i条旅行路线的起点是si,终点是ti.在旅行过程中,小R ...
- 动态解析xml,并生成excel,然后发邮件。
直接贴代码了! DECLARE @CurrentServer NVARCHAR(100)DECLARE @CurrentDatabase NVARCHAR(100)DECLARE @CurrentLo ...