day44-Celery异步分布式
celery异步分布式
Celery是一个python开发的异步分布式任务调度模块。
Celery本身并不提供消息服务,使用第三方服务,也就是borker来传递任务,目前支持rebbimq,redis, 数据库等。
这里我们使用redis
连接url的格式为:
redis://:password@hostname:port/db_number
例如:
BROKER_URL = 'redis://localhost:6379/0'

安装celery
pip install celery
pip install redis
在服务器上安装redis服务器,并启动redis
第一个简单的例子:
[root@localhost celery]# cat test.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from celery import Celery broker = "redis://10.37.208.40:6379/5"
backend = "redis://10.37.208.40:6379/6"
app = Celery("test",broker=broker,backend=backend) @app.task
def add(x,y):
return x+y
启动worker
#celery -A ling worker -l info
生产者
启动worker
#celery -A test worker -l info 生产者 form test import add
a = add.delay(10, 20)
print(a.result) #获取结果
print(a.ready) #是否处理
print(a.get(timeout=1)) #获取结果
print(a.status) #是否处理
celery模块调用
既然celery 是一个分布式的任务调度模块,那么celery是如何和分布式挂钩呢,
celery可以支持多台不通的计算机执行不通的任务或相同的任务
如果要说celery的分布式应用的话,我认为要提到celery的消息路由机制,就要提一下AMQP协议,
具体的可以查看AMQP的文档,简单地说就是可以有多个消息队列(Message Queue). 不同的消息可以指定发送给不同的Message Queue
而这是通过Exchange来实现。发送消息到Message Queue中时,可以指定routing key, Exchange通过routing key来把消息路由(routes)到不通的Message Queue中

实例:
多worker,多队列
cat /usr/local/src/celery/demon3.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @time: 2018/1/7 14:03
# Author: caicai
# @File: demon3.py from celery import Celery app=Celery()
app.config_from_object("celeryconfig") @app.task
def taskA(x,y):
return x*y @app.task
def taskB(x,y,z):
return x+y+z
@app.task
def add(x,y):
return x+y 配置文件一般单独写在一个文件中。 配置文件: cat /usr/local/src/celery/celeryconfig.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @time: 2018/1/7 14:06
# Author: caicai
# @File: celeryconfig.py
from kombu import Queue, Exchange BROKER_URL = "redis://10.37.208.40:6379/1"
CELERY_RESULT_BACKEND = "redis://10.37.208.40:6379/2"
CELERY_QUEUES = {
Queue("default",Exchange("default"),routing_key="default"),
Queue("for_task_A",Exchange("for_task_A"),routing_key="for_task_A"),
Queue("for_task_B",Exchange("for_task_B"),routing_key="for_task_B") } CELERY_ROUTES = {
'demon3.taskA':{"queue":"for_task_A","routing_key":"for_task_A"},
'demon3.taskB':{"queue":"for_task_B","routing_key":"for_task_B"} } 服务端
启动一个worker来指定taskA
celery -A tasks worker -l info -n workerA.%h -Q for_task_A
celery -A tasks worker -l info -n workerB.%h -Q for_task_B 客户端执行
import time from demon3 import * r1 = taskA.delay(20,10)
time.sleep(1)
print(r1)
print(r1.result)
r2 = taskB.delay(10,20,30)
time.sleep(1)
print(r2.result)
print(r2.status)
r3 = add.delay(100,200)
print(r3.result)
print(r3.status) 输出结果:
46adbdca-4e87-4d97-8b82-6883b7c3f64a
200
60
SUCCESS
None
PENDING 我们看到状态是PENDING,表示没有执行,这个是因为没有celeryconfig.py文件中指定改route到哪一个Queue中,所以会被发动到默认的名字celery的Queue中,但是我们还没有启动worker执行celery中的任务。下面,我们来启动一个worker来执行celery队列中的任务。
celery -A demon3 worker -l info -n worker.%h -Q celery print(r3.status) #SUCCESS
Celery与定时任务
下面我们接着在celeryconfig.py中添加CELERYBEAT_SCHEDULE变量: CELERY_TIMEZONE = 'UTC'
CELERYBEAT_SCHEDULE = {
'taskA_schedule' : {
'task':'tasks.taskA',
'schedule':20,
'args':(5,6)
},
'taskB_scheduler' : {
'task':"tasks.taskB",
"schedule":200,
"args":(10,20,30)
},
'add_schedule': {
"task":"tasks.add",
"schedule":10,
"args":(1,2)
}
} 注意格式,否则会有问题 服务器端启动:
celery -A demon3 beat
day44-Celery异步分布式的更多相关文章
- python—Celery异步分布式
python—Celery异步分布式 Celery 是一个python开发的异步分布式任务调度模块,是一个消息传输的中间件,可以理解为一个邮箱,每当应用程序调用celery的异步任务时,会向brok ...
- 异步分布式队列Celery
异步分布式队列Celery 转载地址 Celery 是什么? 官网 Celery 是一个由 Python 编写的简单.灵活.可靠的用来处理大量信息的分布式系统,它同时提供操作和维护分布式系统所需的工具 ...
- Django使用Celery异步任务队列
1 Celery简介 Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行. 任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收 ...
- Celery异步的分布式任务调度理解
什么是Celery呢? Celery是一个用Python开发的异步的分布式任务调度模块. Celery本身不包含消息服务,使用第三方消息服务,也就是Broker,来传递任务,目前支持的有Rebbimq ...
- 【理论】python使用celery异步处理请求
Flask中使用celery队列处理执行时间较长的请求. 一. 安装celery pip install celery flask redis 二. celery简介 Celery是个异步分布式任务队 ...
- Django --- celery异步任务与RabbitMQ模块
一 RabbitMQ 和 celery 1 celery Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务, ...
- celery异步任务、定时任务
阅读目录 一 什么是Celery? 二 Celery的使用场景 三 Celery的安装配置 四 Celery异步任务 五Celery定时任务 六在Django中使用Celery 一 什么是Cele ...
- celery异步任务框架
目录 Celery 一.官方 二.Celery异步任务框架 Celery架构图 消息中间件 任务执行单元 任务结果存储 三.使用场景 四.Celery的安装配置 五.两种celery任务结构:提倡用包 ...
- Celery 异步任务 , 定时任务 , 周期任务 的芹菜
1.什么是Celery?Celery 是芹菜Celery 是基于Python实现的模块, 用于执行异步定时周期任务的其结构的组成是由 1.用户任务 app 2.管道 broker 用于存储 ...
随机推荐
- 自制操作系统Antz(15)——实现启动界面
AntzScript
- opencv检错:程序运行过程正常,当跳出函数时出现断言错误(Debug Assertion Failed)
转载http://blog.csdn.net/u012327581/article/details/51351780 1.问题描述 在VS2015下配置好Opencv后,程序在函数运行过程中正常,调试 ...
- 使用go-template自定义kubectl get输出
kubectl get相关资源,默认输出为kubectl内置,一般我们也可以使用-o json或者-o yaml查看其完整的资源信息.但是很多时候,我们需要关心的信息并不全面,因此我们需要自定义输出的 ...
- kNN算法基本原理与Python代码实践
kNN是一种常见的监督学习方法.工作机制简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k各训练样本,然后基于这k个“邻居”的信息来进行预测,通常,在分类任务中可使用“投票法”,即选择这k ...
- VC++ 实现程序重启
转载:https://blog.csdn.net/what951006/article/details/72729448 一.创建一个Win32项目 二.窗口处理函数中,Create窗口时创建一个按钮 ...
- Bootstrap3基础 栅格系统 col-lg/md/sm/xs-* 简单示例
内容 参数 OS Windows 10 x64 browser Firefox 65.0.2 framework Bootstrap 3.3.7 editor ...
- Java基础知识盘点(一)- 基础篇
基本功 面向对象特征 封装.继承.多态和抽象 1.封装:给对象提供了隐藏内部特性和行为的能力.对象提供一些能被其他对象访问的方法,来改变它内部的数据. 在Java中,其访问权限有3种修饰符:publi ...
- IPTABLES使用总结(内网模拟银行网络)
iptables中有以下三种类型的表: FILTER表,默认的表,包含以下三种内建链: INPUT链,发给本地sockets的包 FORWARD链,经由系统发送的包 OUTPUT链,本地生成并发出的包 ...
- spring cloud之Feign的使用
原始的调用客户端的方式是通过注入restTemplate的方式 restTemplate.getForObject("http://CLIENT/hello", String.cl ...
- 关于AMD 、CMD、 commonjs的认识
首先什么是amd.cmd和commonjs.总的来说,这三个玩意就是js的模块规范. 但是,这三者有什么区别呢.... amd规范是应用于浏览器,如requireJS. commonjs规范应用与服务 ...