Sto flashhu orz flash太强啦

多重背包裸题(逃

使用压维大法,\(f_i\)为总重量为\(i\)时的答案

对于每种物品,记\(w\)为单个的重量,\(v\)为单个的价值,\(m\)为数量,列出转移方程$$f_i=min{f_{i-jw}+jv}(0\leq j\leq m,i-jw \geq 0)$$

数据范围较大,我们可以二进制优化

同样也可以用单调队列,令\(i=kw+b\)(按照余数分组)原方程可以变为$$f_i=min{f_{kw+b-jw}+(k+j-k)v}(...)$$$$=>\ f_i=min{f_{(k-j)w+b}-(k-j)v}+kv(...)$$

对于每个余数\(b\)转移,从后往前枚举\(k\),用单调队列维护长度为\(m\)的\(f_{(k-j)w+b}-(k-j)v\),如果队首超出范围就弹队首,然后用队首转移,然后维护队尾,插入当前元素一堆废话

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define max(a,b) ((a)>(b)?(a):(b)) using namespace std;
const int N=40000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL f[N],n,m,q[N][2],an;
int hd,tl; int main()
{
n=rd(),m=rd();
while(n--)
{
LL v=rd(),w=rd(),p=rd();
for(re int b=0;b<w;b++)
{
int nn=(m-b)/w,i,j;
hd=1,tl=0;
for(i=nn-1;i>=max(nn-p,0);i--)
{
LL xx=f[i*w+b]-i*v;
while(hd<=tl&&xx>q[tl][0]) --tl;
q[++tl][0]=xx,q[tl][1]=i;
}
for(j=nn;j>=0;i--,j--)
{
while(hd<=tl&&q[hd][1]>=j) ++hd;
if(hd<=tl) f[j*w+b]=max(f[j*w+b],q[hd][0]+j*v);
if(i<0) continue;
LL xx=f[i*w+b]-i*v;
while(hd<=tl&&xx>q[tl][0]) --tl;
q[++tl][0]=xx,q[tl][1]=i;
}
}
}
for(int i=1;i<=m;i++) an=max(an,f[i]);
printf("%lld\n",an);
return 0;
}

luogu P1776 宝物筛选_NOI导刊2010提高(02)的更多相关文章

  1. Luogu P1776 宝物筛选_NOI导刊2010提高(02)(多重背包模版)

    传送门 多重背包板子题, 多重背包就是每种东西有好几个,可以把它拆分成一个一个的01背包 优化:二进制拆分(拆成1+2+4+8+16+...) 比如18=1+2+4+8+3,可以证明18以内的任何数都 ...

  2. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

  3. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)

    P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...

  4. P1776 宝物筛选_NOI导刊2010提高(02)

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  5. P1776 宝物筛选_NOI导刊2010提高(02)(背包的二进制优化)

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  6. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)

    为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...

  7. luogu P1801 【黑匣子_NOI导刊2010提高(06)】

    这里提供一个简单实现新思路: . 约定: 以下n指代的数的数量,不是题目所指的n 以下m指代询问的数量,不是题目所指的m (不好意思,这是本人习惯) 分块+堆 **堆一次只能输出堆顶的一个元素,如果我 ...

  8. LUOGU P1779 魔鬼杀手_NOI导刊2010提高(03)

    传送门 解题思路 背包,首先先用aoe都打残然后单伤补刀,用f[i]表示AOE打了i的伤害的最小花费,g[i]表示单伤打了i的伤害的最小花费. 代码 #include<iostream> ...

  9. Luogu P1801 黑匣子_NOI导刊2010提高(06)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

随机推荐

  1. ZJOI2019 Day1 题解

    想要继续向前,就从克服内心的恐惧开始. 麻将 题意 在麻将中,我们称点数连续的三张牌或三张点数一样的成为面子,称两张点数一样的牌为对子.一副十四张麻将牌的胡牌条件是可以分成四个面子和一个对子或者分成七 ...

  2. java中线程安全和非线程安全的集合

    线程安全 非线程安全 Collection Vector ArrayList.LinkedList HashSet.TreeSet Map HashTable HashMap.TreeMap 字符串 ...

  3. Layui_1.0.9_分页实例_Java

    一.实体 package com.ebd.application.modules.taskManage.pojo; import com.ebd.application.common.Base.Bas ...

  4. fio 磁盘性能

    /fio -ioengine=libaio -bs=32k -direct=1 -thread -rw=randrw -percentage_random=100,0 -size=10G -filen ...

  5. Migrate Maven Projects to Java 11

    Migrate Maven Projects to Java 11 So you want to migrate to Java 11 but your Maven project is still ...

  6. HNOI2017礼物

    礼物 这估计是最水,最无脑的一道题了 首先发现总和最接近时答案最小 发现答案就是\((\sum_{i=1}^{n}a[i]^2+b[i]^2)-2*max(\sum_{i=1}^{n}a[i]*b[i ...

  7. vimrc 的配置

    windows syntax on set nocompatible set guifont=Consolas:h17 set linespace=0 color molokai set clipbo ...

  8. 【AGC010D】Decrementing

    Solution 日常博弈论做不出来. 首先,数值全部为1的局面先手必败. 在接下来的过程中,我们只关注那些大于1的数值. 按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同.那么局面 ...

  9. Bean和Spirng模块

    容纳Bean 在Spring中,应用对象生存于Spring容器中,如图所示,Spring容器可以创建.装载.配置这些Bean,并且可以管理它们的生命周期. Spring的容器实现 Bean工厂(org ...

  10. Spring Boot Actuator的端点

    Spring Boot Actuator的关键特性是在应用程序里提供众多Web端点,通过它们了解应用程序 运行时的内部状况.有了Actuator,你可以知道Bean在Spring应用程序上下文里是如何 ...