题目链接:https://cn.vjudge.net/contest/283743#problem/F

题目大意:给你一个字符串,然后让你求出不同的子串的个数。

具体思路:首先,一个字符串中总的子串个数是len*(len+1)/2,然后就开始去重了,通过height数组,求出所有重复的子串的个数,然后就用总的子串的个数-重复的子串的个数就可以了。

AC代码:

 #include<iostream>
#include<stack>
#include<cstring>
#include<iomanip>
#include<stdio.h>
#include<algorithm>
#include<cmath>
using namespace std;
# define ll long long
const int maxn = 5e5+;
int cntA[maxn], cntB[maxn], sa[maxn], tsa[maxn], A[maxn], B[maxn], height[maxn];
int Rank[maxn];
char ch[maxn];
ll n;
//sa[i]代表第i小的后缀位置,Rank[i]代表第i位置开始的后缀在所有的后缀串中排名第几
// height[i]代表排名第i个字符串和第i-1个字符串的相同前缀的长度
void cal()
{
for(int i = ; i < ; i++) cntA[i] = ;
for(int i = ; i <= n; i++) cntA[ch[i-]]++;
for(int i = ; i < ; i++) cntA[i] += cntA[i-];
for(int i = n; i; i--) sa[cntA[ch[i-]]--] = i;
Rank[sa[]] = ;
for(int i = ; i <= n; i++)
{
Rank[sa[i]] = Rank[sa[i-]];
if(ch[sa[i]-] != ch[sa[i-]-]) Rank[sa[i]]++;
}
for(int l = ; Rank[sa[n]] < n; l <<= )
{
memset(cntA, , sizeof(cntA));
memset(cntB, , sizeof(cntB));
for(int i = ; i <= n; i++)
{
cntA[A[i] = Rank[i]]++;
cntB[B[i] = (i+l <= n)?Rank[i+l]:]++;
}
for(int i = ; i <= n; i++) cntB[i] += cntB[i-];
for(int i = n; i; i--) tsa[cntB[B[i]]--] = i;
for(int i = ; i <= n; i++) cntA[i] += cntA[i-];
for(int i = n; i; i--) sa[cntA[A[tsa[i]]]--] = tsa[i];
Rank[sa[]]=;
for(int i = ; i <= n; i++)
{
Rank[sa[i]] = Rank[sa[i-]];
if(A[sa[i]] != A[sa[i-]] || B[sa[i]] != B[sa[i-]]) Rank[sa[i]]++;
}
}
for(int i = , j = ; i <= n; i++)
{
if(j) j--;
while(ch[i+j-] == ch[sa[Rank[i]-] + j - ]) j++;
height[Rank[i]] = j;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%s",ch);
n=strlen(ch);
if(n==)
{
printf("1\n");
continue;
}
// cout<<1<<endl;
cal();
ll ans=n*(n+)/;
//cout<<ans<<endl;
for(int i=; i<=n; i++)
{
ans-=height[i];
// cout<<i<<" "<<height[i]<<endl;
}
printf("%lld\n",ans);
}
return ;
}

F - New Distinct Substrings (后缀数组)的更多相关文章

  1. SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数

    题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...

  2. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  3. 【SPOJ – SUBST1】New Distinct Substrings 后缀数组

    New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...

  4. SPOJ DISUBSTR Distinct Substrings 后缀数组

    题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...

  5. SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )

    题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...

  6. spoj Distinct Substrings 后缀数组

    给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB  BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...

  7. [spoj694&spoj705]New Distinct Substrings(后缀数组)

    题意:求字符串中不同子串的个数. 解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 1.总数减去height数组的和即可. 注意这里height中为什么不需 ...

  8. spoj 694. Distinct Substrings 后缀数组求不同子串的个数

    题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...

  9. SPOJ_705_New Distinct Substrings_后缀数组

    SPOJ_705_New Distinct Substrings_后缀数组 题意: 给定一个字符串,求该字符串含有的本质不同的子串数量. 后缀数组的一个小应用. 考虑每个后缀的贡献,如果不要求本质不同 ...

  10. SPOJ- Distinct Substrings(后缀数组&后缀自动机)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

随机推荐

  1. unorder_map 自定义KEY

    1. boost::unorder_map 实现自定义KEY // boostLibTest.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" ...

  2. python列表和元组操作

    列表 列表(list)是python以及其他语言中最常用到的数据结构之一.Python使用中括号[ ]来解析列表.列表是可变的(mutable)—可以改变列表的内容. 定义列表 names = ['m ...

  3. BZOJ3899 仙人掌树的同构(圆方树+哈希)

    考虑建出圆方树.显然只有同一个点相连的某些子树同构会产生贡献.以重心为根后(若有两个任取一个即可),就只需要处理子树内部了. 如果子树的根是圆点,其相连的同构子树可以任意交换,方案数乘上同构子树数量的 ...

  4. Leetcode 217.存在重复元素 By Python

    给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 示例 1: 输入: [1,2,3,1] 输出: true ...

  5. 【BZOJ3507】通配符匹配(哈希,动态规划)

    [BZOJ3507]通配符匹配(哈希,动态规划) 题面 BZOJ 题解 对于匹配唯一存在影响的只有通配符,而\(?\)的影响也并不大,所以唯一需要仔细考虑的是\(*\). 考虑一个\(dp\),设\( ...

  6. luogu1514 [NOIp2010]引水入城 (bfs+记忆化搜索)

    我们先bfs一下看看是否能到最底下的所有点 如果不能的话,直接把不能到的那几个数一数就行了 如果能的话: 可以发现(并不可以)某格能到达的最底下的格子一定是一个连续的区间 (因为如果不连续的话,我们先 ...

  7. 端午漫谈(附:Ubuntu18.04下轻量截图软件)

    先说声端午快乐- 有空就陪陪家人吧.今天陪外公吃了顿饭,陪老人家聊了会天,颇有点感触.发现技术真的是改变生活,小孩抖音自学跳舞,大人微信刷又刷,很多天海一方的老朋友都可以联系到了... 其实最有感触的 ...

  8. redis中的数据类型

    redis不是一个纯文本kv存储,实际上,它是一个数据结构服务,支持不同类型的value. 包含以下类型: 1.Binary-safe strings. 二进制安全的字符串 2.Lists: coll ...

  9. Java -- JDBC 学习--批量处理

    批量处理JDBC语句提高处理速度 当需要成批插入或者更新记录时.可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率JDBC的批量处理语句包 ...

  10. PendingIntent的使用

    1, 构造intent Intent mIntent = new Intent("android.intent.action.MAIN"); ComponentName comp ...