bzoj 3143 随机游走
题意:
给一个简单无向图,一个人从1号节点开始随机游走(即以相同概率走向与它相邻的点),走到n便停止,问每条边期望走的步数.
首先求出每个点期望走到的次数,每条边自然是从它的两个端点走来.
/**************************************************************
Problem: 3143
User: idy002
Language: C++
Result: Accepted
Time:736 ms
Memory:9956 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <algorithm>
#define N 510
#define M N*N
using namespace std; int n, m;
int head[N], dest[M], next[M], etot;
int dgr[N], uu[M], vv[M], qu[M];
double ww[M];
double a[N][N]; void adde( int u, int v ) {
etot++;
dest[etot] = v;
next[etot] = head[u];
head[u] = etot;
}
void gauss() {
int i, j, k;
for( i=; i<=n; i++ ) {
j=i;
for( k=i+; k<=n; k++ )
if( fabs(a[k][i])>fabs(a[j][i]) ) j=k;
for( k=i; k<=n+; k++ )
swap( a[j][k], a[i][k] );
for( j=i+; j<=n; j++ ) {
double r = a[j][i]/a[i][i];
for( k=i; k<=n+; k++ )
a[j][k] -= a[i][k]*r;
}
}
for( int i=n; i>=; i-- ) {
a[i][n+] /= a[i][i];
a[i][i] = 1.0;
for( int j=i-; j>=; j-- ) {
a[j][n+] -= a[j][i]*a[i][n+];
a[j][i] = 0.0;
}
}
}
bool cmp( int a, int b ) {
return ww[a] > ww[b];
}
int main() {
scanf( "%d%d", &n, &m );
for( int i=; i<=m; i++ ) {
scanf( "%d%d", uu+i, vv+i );
adde( uu[i], vv[i] );
adde( vv[i], uu[i] );
dgr[uu[i]]++;
dgr[vv[i]]++;
}
for( int i=; i<=n; i++ )
a[i][i] = -1.0;
a[][n+] = -;
for( int u=; u<=n; u++ ) {
for( int t=head[u]; t; t=next[t] ) {
int v=dest[t];
if( v==n ) continue;
a[u][v] += 1.0/dgr[v];
}
}
gauss();
for( int i=; i<=m; i++ ) {
int u=uu[i], v=vv[i];
if( u!=n ) ww[i]+=a[u][n+]/dgr[u];
if( v!=n ) ww[i]+=a[v][n+]/dgr[v];
}
for( int i=; i<=m; i++ )
qu[i] = i;
sort( qu+, qu++m, cmp );
double ans = 0.0;
for( int i=; i<=m; i++ )
ans += i * ww[qu[i]];
printf( "%.3lf\n", ans );
}
bzoj 3143 随机游走的更多相关文章
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- bzoj 3143: [Hnoi2013]游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...
- [BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...
- ●BZOJ 3143 [Hnoi2013]游走
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3143题解: 期望dp,高斯消元 首先有这样一种贪心分配边的编号的方案:(然后我没想到,233 ...
随机推荐
- 安装java时,配置环境变量classpath的作用
想必大家在安装javaSE或其它版本时会注意到,在配置环境变量path之后,还需要新建一个名为CLASSPATH,变量值设为 .;%JAVA_HOME%\lib;%JAVA_HOME%\lib\dt. ...
- CentOS 6.5 rsync+inotify实现数据实时同步备份
CentOS 6.5 rsync+inotify实现数据实时同步备份 rsync remote sync 远程同步,同步是把数据从缓冲区同步到磁盘上去的.数据在内存缓存区完成之后还没有写入到磁盘 ...
- centos 编译安装PHP5.4
2013年12月29日 19:52:30 已经安装好Apache 2.4 php版本 5.4 ./configure --prefix=/usr/local/lamp/php --with-apxs2 ...
- 初识神经网络NeuralNetworks
1.神经网络的起源 在传统的编程方法中,我们通常会告诉计算机该做什么,并且将一个大问题分解为许多小的.精确的.计算机可以轻松执行的任务.相反,在神经网络中,我们不告诉计算机如何解决问题,而是让计算机从 ...
- typeof引发的思考
今天在群里看到一位网友提问:var status=1; typeof status 结果输出什么 我会心一笑 ,这尼玛这么简单,一看就是‘number’,结果网友说不是number,而是string ...
- 性能测试十八:jmeter分布式
一台压力机产生得压力是有限的,尤其是jmeter,java本来性能就不是很好,并发特别多的时候,jmeter的性能会急剧下降,正常的接口,若单台压力机,超过1000并发以后,jmeter的性能就不怎么 ...
- eclipse的操作
IDEA至少在4G内存的电脑才能使用 eclipse中:项目名字小写 close project:关掉项目 删除未尽的项目导入eclipse中的步骤: 左边右键>>>import&l ...
- 胖哈勃杯Pwn400、Pwn500详解
概述 这次的胖哈博杯我出了Pwn400.Pwn500两道题目,这里讲一下出题和解题的思路.我个人感觉前两年的Pwn题更多的是考察单一的利用技巧,比我这有个洞怎么利用它拿到权限.但是我研究了一些最近的题 ...
- stl 常用代码
CString类型的replace ; while((pos = it->m_strFile.find(_T("%UC_INSTALL_ROOT%\\"), pos)) != ...
- 【图的遍历】广度优先遍历(DFS)、深度优先遍历(BFS)及其应用
无向图满足约束条件的路径 •[目的]:掌握深度优先遍历算法在求解图路径搜索问题的应用 [内容]:编写一个程序,设计相关算法,从无向图G中找出满足如下条件的所有路径: (1)给定起点u和终点v. ( ...