命名实体识别,使用pyltp提取文本中的地址
首先安装pyltp
单例类(第一次调用时加载模型)
class Singleton(object):
def __new__(cls, *args, **kwargs):
if not hasattr(cls, '_the_instance'):
cls._the_instance = object.__new__(cls, *args, **kwargs)
return cls._the_instance
使用pyltp提取地址
import os
from pyltp import Segmentor, Postagger, NamedEntityRecognizer
from main.models.Singleton import Singleton
class address_extract_model(Singleton):
print('load ltp model start...')
pwd = os.getcwd()
project_path = os.path.abspath(os.path.dirname(pwd) + os.path.sep + ".")
LTP_DATA_DIR = project_path + '\AlarmClassification\main\ltp\model' # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')
pos_model_path = os.path.join(LTP_DATA_DIR, 'pos.model') # 词性标注模型路径,模型名称为`pos.model`
ner_model_path = os.path.join(LTP_DATA_DIR, 'ner.model') # 命名实体识别模型路径,模型名称为`ner.model`
print('path' + cws_model_path)
segmentor = Segmentor() # 初始化实例
segmentor.load(cws_model_path) # 加载模型
postagger = Postagger() # 初始化实例
postagger.load(pos_model_path) # 加载模型
recognizer = NamedEntityRecognizer() # 初始化实例
recognizer.load(ner_model_path) # 加载模型
def get_model(self):
return self.segmentor, self.postagger, self.recognizer
def get_address_prediction(alarm_content):
model = address_extract_model()
segmentor, postagger, recognizer = model.get_model()
words = segmentor.segment(alarm_content) # 分词
postags = postagger.postag(words) # 词性标注
netags = recognizer.recognize(words, postags) # 命名实体识别
result = ''
for i in range(0, len(netags)):
print(words[i] + ': ' + netags[i])
# 地名标签为 ns
if 's' in netags[i]:
result += words[i] + ','
if len(result) < 1:
result = 'No address!'
print(result)
return result
def get_address(alarm_content):
print("start get_address...")
result = "Exception"
try:
result = get_address_prediction(alarm_content)
except Exception as ex:
print(ex)
print("Output is " + result)
return result
# segmentor.release() # 释放模型
# postagger.release()
# recognizer.release()
运行效果

项目源码 ( 命名实体提取代码位于main/ltp, 模型文件需要到pyltp下载 )
https://github.com/haibincoder/AlarmClassification
命名实体识别,使用pyltp提取文本中的地址的更多相关文章
- 『深度应用』NLP命名实体识别(NER)开源实战教程
近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...
- 机器学习 - 命名实体识别之Hidden Markov Modelling
概述 命名实体识别在NLP的应用中也是非常广泛的,尤其是是information extraction的领域.Named Entity Recognition(NER) 的应用中,最常用的一种算法模型 ...
- pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...
- 使用哈工大LTP进行文本命名实体识别并保存到txt
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/broccoli2/article/det ...
- 神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...
- 【神经网络】神经网络结构在命名实体识别(NER)中的应用
命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图.它是NLP领域中一些复杂任务(例如关系抽取,信息检索等)的 ...
- 用深度学习做命名实体识别(二):文本标注工具brat
本篇文章,将带你一步步的安装文本标注工具brat. brat是一个文本标注工具,可以标注实体,事件.关系.属性等,只支持在linux下安装,其使用需要webserver,官方给出的教程使用的是Apac ...
- 学习笔记CB007:分词、命名实体识别、词性标注、句法分析树
中文分词把文本切分成词语,还可以反过来,把该拼一起的词再拼到一起,找到命名实体. 概率图模型条件随机场适用观测值条件下决定随机变量有有限个取值情况.给定观察序列X,某个特定标记序列Y概率,指数函数 e ...
- NLP入门(四)命名实体识别(NER)
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER). 命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领 ...
随机推荐
- Flutter常用组件(Widget)解析-Text
单一格式的文本. 文本组件是以字符串形式显示的单一格式,这个文本字符串可以是多行显示也可以是单独一行显示,主要取决于你的布局限制. 这样式内容是可选择的,如果你省略了,则会使用文本的默认样式来显示.如 ...
- 网页图表Highcharts实践教程之图表代码构成
网页图表Highcharts实践教程之图表代码构成 Highcharts第一个实例 下面我们来实现本书的第一个Highcharts实例. [实例1-1]下面来制作北京连续一周最高温度折线图.操作过程如 ...
- 使用boost线程定时器作为后台线程来切换主循环程序状态方法2
上一篇的方法主要使用的是:通过线程延时实 现的定时,并且只能定时一次,如果需要对此定时处理,就需要使用下面的定时器: #include "stdafx.h" #include &l ...
- MySQL数据库-----基本命令操作
小编之前一直想要了解一下,如何搭建数据库,这里分享一下在此之前的一些准备工作,首先小编是先了解数据库(mysql),以下是小编的一些认识: 一.mysql常用命令1.mysql登录和退出 登录:mys ...
- [BZOJ2877][NOI2012]魔幻棋盘(二维线段树)
https://blog.sengxian.com/solutions/bzoj-2877 注意二维线段树的upd()也是一个O(log n)的函数(pushdown()应该也是但没写过). #inc ...
- Python数值计算之插值曲线拟合-01
3 插值与曲线拟合 Interpolation and Curve Fitting 给定n+1个数据点(xi,yi), i = 0,1,2,…,n,评估y(x). 3.1 介绍(introdu ...
- Android监听view的attached或detached状态
我们在开发中,希望监听View的attached或detached状态,来进行比如eventbus的注册与解注册的操作,非常的方便实用. 可以使用系统给我们提供的listener,代码使用如下: mV ...
- Leaflet_创建地图(官网示例,可以直接运行)(2017-10-20)
官网:http://leafletjs.com/examples.html 快速启动指南 http://leafletjs.com/examples/quick-start/example.html ...
- java中哪些数值不能被初始化
main方法中的变量不能被初始化 final修饰的变量不能被初始化·
- oracle data integrator与大数据平台的集成
在最新版本的ODI中,通过使用各种知识模块,可在统一的界面上实现对传统数据库.hive, pig, spark, hdfs等的ETL操作,满足在同一系统或采用相同的方式实现ETL功能. 详细的内容可参 ...