C2 - Encryption (medium)

思路:

传统的dp:

dp[i][j] 表示到第i个位置为止,分成j段的最大值

dp[i][j] = max(dp[l][j-1] + (sum[i] - sum[l]) % p) 0<= l < i

优化的dp:

我们发现n很大,但是p很小

于是

dp[i][j] 表示sum取模p后为i,分成j段的最大值

dp[i][j] = max(dp[l][j-1] + (sum[i] - l) % p) 0<= l < p

代码:

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. #define LL long long
  4. #define pb push_back
  5. #define mem(a, b) memset(a, b, sizeof(a))
  6.  
  7. const int N = 2e4 + ;
  8. const int INF = 0x3f3f3f3f;
  9. int dp[][], a[N];
  10. int main() {
  11. int n, p, k;
  12. scanf("%d%d%d", &n, &k, &p);
  13. for (int i = ; i <= n; i++) {
  14. scanf("%d", &a[i]);
  15. a[i] += a[i-];
  16. a[i] %= p;
  17. }
  18. for (int i = ; i < p; i++) {
  19. for (int j = ; j <= k; j++)
  20. dp[i][j] = -INF;
  21. }
  22. dp[][] = ;
  23. for (int i = ; i <= n; i++) {
  24. for (int j = k; j >= ; j--) {
  25. for(int l = ; l < p; l ++)
  26. dp[a[i]][j] = max(dp[a[i]][j], dp[l][j-] + ((a[i]-l)%p+p)%p);
  27. }
  28. }
  29. printf("%d\n",dp[a[n]][k]);
  30. return ;
  31. }

Codefroces 958C2 - Encryption (medium)的更多相关文章

  1. Codefroces 958C2 - Encryption (medium) 区间dp

    转自:https://www.cnblogs.com/widsom/p/8857777.html     略有修改 题目大意: n个数,划分为k段,每一段的和mod p,求出每一段的并相加,求最大是多 ...

  2. [Codeforces958C2]Encryption (medium)(区间DP)

    Description 题目链接 Solution 显然的区间DP,正常想法f[i][j]表示前i个数分成j块,每次在i前找一个k使得balala,然而常规打法会超时 我们发现,对于i前面的所有点,他 ...

  3. 20190708三人开黑CF模拟赛

    7月8号晚上8点和两位巨佬开了一场虚拟cf: [Helvetic Coding Contest 2018 online mirror (teams allowed, unrated)] 我这么蔡,只A ...

  4. Dynamics CRM 2015-Data Encryption激活报错

    在CRM的日常开发中,Data Encryption经常是不得不开启的一个功能.但是有时,我们可能遇到一种情况,Organization导入之后,查看Data Encryption是已激活的状态,但是 ...

  5. backup, file manipulation operations (such as ALTER DATABASE ADD FILE) and encryption changes on a database must be serialized.

    昨天在检查YourSQLDba备份时,发现有台数据库做备份时出现了下面错误信息,如下所示: <Exec>   <ctx>yMaint.ShrinkLog</ctx> ...

  6. SQL Server 2014 Backup Encryption

    转载自: Microsoft MVP Award Program Blog 来源:Microsoft MVP Award Program Blog 的博客:https://blogs.msdn.mic ...

  7. XShell 无法匹配的outgoing encryption算法 ,No matching outgoing encryption algorithm found

    在链接的属性(SSH -> 安全性) 的加密算法列表中选择 aes256-ctr, mac加密列表中选择hmac-sha2-256,保存即可 To enable hmac-sha2-256 an ...

  8. SQL Server安全(9/11):透明数据加密(Transparent Data Encryption)

    在保密你的服务器和数据,防备当前复杂的攻击,SQL Server有你需要的一切.但在你能有效使用这些安全功能前,你需要理解你面对的威胁和一些基本的安全概念.这篇文章提供了基础,因此你可以对SQL Se ...

  9. SQL Server安全(8/11):数据加密(Data Encryption)

    在保密你的服务器和数据,防备当前复杂的攻击,SQL Server有你需要的一切.但在你能有效使用这些安全功能前,你需要理解你面对的威胁和一些基本的安全概念.这篇文章提供了基础,因此你可以对SQL Se ...

随机推荐

  1. 【题解】Luogu P3203 [HNOI2010]弹飞绵羊

    原题传送门 这题用Link-Cut-Tree解决,Link-Cut-Tree详解 预处理:从一个点弹到另一个点就在lct里从\(i\)连边到\(i+k_i\),如果绵羊被弹飞了就从\(i\)连边到\( ...

  2. linux homebrew skill 技巧

    $ cat /usr/bin/gitdiffH0#!/bin/bashgit diff HEAD $(git ls-files| grep '\.py$\|\.py\.in$') | osflake8 ...

  3. 利用shell脚本通过ssh绕过输入密码直接登录主机

    shell #!/usr/bin/expect spawn ssh root@192.168.137.141 expect "*password:" send "lizh ...

  4. css-过渡

    css过渡:元素从一种样式逐渐改变为另一种的效果.过渡所需的条件:1.所过渡的元素必须有css样式.2.必须有过渡时间.以下是过渡元素的属性:transition:简写属性,用于在一个属性中设置四个过 ...

  5. Java——List:list.add(index, element)和list.set(index, element)的区别

    add(index, element) 含义:在集合索引为index的位置上增加一个元素element,集合list改变后list.size()会增加1 用法 testList.add(index, ...

  6. Spring 学习历程(二)

    JUnit测试 maven导入包 <!-- https://mvnrepository.com/artifact/junit/junit --> <dependency> &l ...

  7. Flutter的脚手架(Scaffold)

  8. HDU - 1875 畅通工程再续【最小生成树】

    Problem Description 相信大家都听说一个"百岛湖"的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖 ...

  9. 怎么在父窗口调用它页面的iframe里面数据,进行操作?

    注:在服务器下操作有效果,本地无效 document.getElementById("taskdetail1").contentWindow.test(a) document.ge ...

  10. 51nod 1437 迈克步(单调栈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1437 题意: 思路: 单调栈题.求出以每个数为区间最大值的区间范围即可. ...