参考:

用 Doc2Vec 得到文档/段落/句子的向量表达

https://radimrehurek.com/gensim/models/doc2vec.html

Gensim Doc2vec Tutorial on the IMDB Sentiment Dataset

基于gensim的Doc2Vec简析

Gensim进阶教程:训练word2vec与doc2vec模型

用gensim doc2vec计算文本相似度

转自:

gensim doc2vec + sklearn kmeans 做文本聚类

原文显示太乱 为方便看摘录过来。。

用doc2vec做文本相似度,模型可以找到输入句子最相似的句子,然而分析大量的语料时,不可能一句一句的输入,语料数据大致怎么分类也不能知晓。于是决定做文本聚类。
选择kmeans作为聚类方法。前面doc2vec可以将每个段文本的向量计算出来,然后用kmeans就很好操作了。
选择sklearn库中的KMeans类。

程序如下:
# coding:utf-8

import sys
import gensim
import numpy as np

from gensim.models.doc2vec import Doc2Vec, LabeledSentence
from sklearn.cluster import KMeans

TaggededDocument = gensim.models.doc2vec.TaggedDocument

def get_datasest():
    with open("out/text_dict_cut.txt", 'r') as cf:
        docs = cf.readlines()
        print len(docs)

    x_train = []
    #y = np.concatenate(np.ones(len(docs)))
    for i, text in enumerate(docs):
        word_list = text.split(' ')
        l = len(word_list)
        word_list[l-1] = word_list[l-1].strip()
        document = TaggededDocument(word_list, tags=[i])
        x_train.append(document)

    return x_train

def train(x_train, size=200, epoch_num=1):
    model_dm = Doc2Vec(x_train,min_count=1, window = 3, size = size, sample=1e-3, negative=5, workers=4)
    model_dm.train(x_train, total_examples=model_dm.corpus_count, epochs=100)
    model_dm.save('model/model_dm')

    return model_dm

def cluster(x_train):
    infered_vectors_list = []
    print "load doc2vec model..."
    model_dm = Doc2Vec.load("model/model_dm")
    print "load train vectors..."
    i = 0
    for text, label in x_train:
        vector = model_dm.infer_vector(text)
        infered_vectors_list.append(vector)
        i += 1

    print "train kmean model..."
    kmean_model = KMeans(n_clusters=15)
    kmean_model.fit(infered_vectors_list)
    labels= kmean_model.predict(infered_vectors_list[0:100])
    cluster_centers = kmean_model.cluster_centers_

    with open("out/own_claasify.txt", 'w') as wf:
        for i in range(100):
            string = ""
            text = x_train[i][0]
            for word in text:
                string = string + word
            string = string + '\t'
            string = string + str(labels[i])
            string = string + '\n'
            wf.write(string)

    return cluster_centers

if __name__ == '__main__':
    x_train = get_datasest()
    model_dm = train(x_train)
    cluster_centers = cluster(x_train)

models.doc2vec – Deep learning with paragraph2vec的更多相关文章

  1. DEEP LEARNING WITH STRUCTURE

    DEEP LEARNING WITH STRUCTURE Charlie Tang is a PhD student in the Machine Learning group at the Univ ...

  2. deep learning新征程

    deep learning新征程(一) zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-11-26   声明: 1 ...

  3. A Statistical View of Deep Learning (I): Recursive GLMs

    A Statistical View of Deep Learning (I): Recursive GLMs Deep learningand the use of deep neural netw ...

  4. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  5. 《Deep Learning》(深度学习)中文版 开发下载

    <Deep Learning>(深度学习)中文版开放下载   <Deep Learning>(深度学习)是一本皆在帮助学生和从业人员进入机器学习领域的教科书,以开源的形式免费在 ...

  6. How To Improve Deep Learning Performance

    如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...

  7. 深度学习Deep learning

    In the last chapter we learned that deep neural networks are often much harder to train than shallow ...

  8. 《Deep Learning》全书已完稿_附全书电子版

    Deep Learning第一篇书籍最终问世了.站点链接: http://www.deeplearningbook.org/ Bengio大神的<Deep Learning>全书电子版在百 ...

  9. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

随机推荐

  1. Http Header Content-Typ

    Http Header里的Content-Type一般有这三种:application/x-www-form-urlencoded:数据被编码为名称/值对.这是标准的编码格式.multipart/fo ...

  2. JSP开发Web应用系统

    1.动态网站开发基础 1-1:动态网页 a.为什么需要动态网页(当我们需要修改网页内容的时候,都要重新上传一次覆盖原来的页面.而且,制作必须要通过专用的网页制作工具,比如:Dreamweaver.Fr ...

  3. io重定向打开关闭 Eclipse中c开发printf无法输出解决办法

    if(freopen("e:\\lstm-comparec\\lstm\\lstm\\output.txt","a",stdout)==NULL)fprintf ...

  4. JS&Jquery中的循环/遍历

    JavaScript中的遍历 for 遍历 var anArray = ['one','two']; for(var n = 0; n < anArray.length; n++) { //具体 ...

  5. Java 统计字母个数

    原理: 将字符串转换成char字符数组 然后使用另一个数组存储 代码如下 public class CalChar { public static void main(String[] args) { ...

  6. Dev-cpp怎样去掉括号匹配?

    很多编C/C++的同学在用Dev-cpp的时候,就感觉到括号匹配很烦,又不知道哪里去掉. 所以,让ljn告诉你怎样去掉括号匹配. 1.打开Dev-cpp. 2.在菜单栏上,点击“工具[T]”,选择“编 ...

  7. maven项目配置findbugs插件 使用git钩子控制代码的提交

    maven项目配置findbugs插件对代码进行静态检测 当发现代码有bug时,就不让用户commit代码到远程仓库里 没有bug时才可以commit到远程仓库中 (1)新建maven项目 ,配置fi ...

  8. 四:(之四)基于已有镜像构建自己的Docker镜像

    4构建自己的Docker镜像 4.1常用命令: 等同于docker commit 将一个被改变的容器创建成一个新的image 等同于docker build 通过Dockerfile创建一个image ...

  9. 十四. Python基础(14)--递归

    十四. Python基础(14)--递归 1 ● 递归(recursion) 概念: recursive functions-functions that call themselves either ...

  10. Python的网络编程--思维导图

    Python的网络编程--思维导图