扩展欧几里得,解线性同余方程 逆元 poj1845
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b)
int exgcd(int a,int b,int &x,int &y){
if(b==){x=,y=;return a;}
int d=exgcd(b,a%b,x,y);
int z=x;x=y;y=z-y*(a/b);
return d;
}
当d可以整除c时,一般方程ax+by=c的一组特解求法:
1.求ax+by=d的特解x0,y0
2.ax+by=c的特解为(c/d)x0,(c/d)y0
上述方程的通解:(c/d)x0+k(b/d) ,(c/d)y0-k(a/d)
乘法逆元有自然数倒数的类似性质
乘法逆元:b,m互质,并且b整除a,则存在x,有a/b = a*x(mod m),即a/b模m的结果和a*x模m的结果是相同的,这个x称为b的模m的乘法逆元,记作b^(-1) (mod m)
可得b*b^(-1) = 1(mod m)
那么当m是质数时,根据费马小定理,有b^(m-1)=1(mod m),那么b的逆元就是b^(m-2)
如果只是保证b,m互质,那么解同余方程b*x=1(mod m)可以求出x
所以当遇到除法取模运算时,可以先求出逆元,转换成乘法取模运算
/*
如果单独是个A,那么就可以分解质因数后用公式求约数个数
那么B个A相乘,其约数个数就是mul{1+p^1+p^2...+p^B*ci}
结果是比数列求和后再相乘,每项等比数列的结果是
(pi^(B*ci+1)-1)/(pi-1) mod9901,
1.pi-1不是9901的倍数,(pi-1)^(9901-2)就是逆元
2.pi-1是9901的倍数,逆元不存在,但是pi mod 9901=1。。。 先把A分解质因数,再等比数列求和(快速幂+逆元),
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define mod 9901 int m,p[],c[];
void divide(int n){
m=;
for(int i=;i*i<=n;i++)
if(n%i==){
p[++m]=i,c[m]=;
while(n%i==) n/=i,c[m]++;
}
if(n>) p[++m]=n,c[m]=;
}
ll pow(ll a,ll b){
ll res=;
while(b){
if(b&) res=res*a%mod;
a=a*a%mod;
b>>=;
}
return res;
} int main(){
ll a,b,ans=;
scanf("%lld%lld",&a,&b);
divide(a);//分解质因数
for(int i=;i<=m;i++){
if((p[i]-)%mod==){
ans=ans*(b*c[i]+)%mod;
continue;
}
//求分子和分母逆元
ll x=pow(p[i],b*c[i]+)%mod;
x=(x-+mod)%mod;
ll y=pow(p[i]-,mod-)%mod;
ans=ans*x%mod*y%mod;
}
printf("%lld\n",ans);
}
求解同余方程:a*x=b(mod m)等价于a*x-b是m的倍数,等价于a*x+m*y=b,当gcd(a,m)|b时,有解
按照拓展欧几里得算法,可解得特解x=x0*b/gcd(a,m)就是原线性同余方程的一个解
通解为所有模m/gcd(a,m)与x同余的整数
求解同余方程:noip2012:a*x=1(mod b)的最小整数解
#include<bits/stdc++.h>
using namespace std;
#define ll long long ll a,b,x,y;
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=;y=;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=x; x=y,y=z-y*(a/b);
return d;
}
int main(){
cin >> a >> b;
exgcd(a,b,x,y);//x可能是负数
cout << (x%b+b)%b<<endl;
}
扩展欧几里得,解线性同余方程 逆元 poj1845的更多相关文章
- Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)
一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- POJ2115 - C Looooops(扩展欧几里得)
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...
- C. Ray Tracing——披着搜索外衣的扩展欧几里得
[题目大意] 给你一个n*m的矩形,光线从(0,0)出发,沿右上方向以每秒根号2米的速度运动,碰到矩形边界就会反弹(符合物理规律的反弹),询问k个点,这些点都在矩形内部且不在矩形边界上,求光经过这些点 ...
- bzoj1407 [Noi2002]Savage——扩展欧几里得
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...
- Uva12169 扩展欧几里得模板
Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...
- 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)
题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...
随机推荐
- java中BorderLayout的使用方法
相关设置: 使用BorderLayout布局上下左右中布局5个按键,单击中间的那个按键时就关闭窗口 代码: /**** *java中BorderLayout的使用方法 * 使用BorderLayout ...
- shell函数与数组
shell函数与数组 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.为什么要使用shell函数 简单的说函数的作用就是把程序里多次调用的相同的代码部分定义成一份,然后起个名字, ...
- Jquery 获取radio选中值
- 51nod1331 狭窄的通道
题目传送门 这道题 51nod只Ac了十二个人 没有题解可以研究 所以就自己YY了半天 在这里先感谢一波岚清大爷 orz 然后这道题我分了两种情况 一种是左边的往左跑右边的往右跑 中间有一部分直接走不 ...
- cetus系列~ 继续分析
一 简介:我们来继续探讨cetus的细节问题 二 命令 1 select help 查看帮助 2 select * from backends 查看后端列表 3 select conn_detai ...
- ubuntu14.04 提示 卷 文件系统根目录 仅剩余xxx的硬盘空间
- 【转】inotify+rsync实现实时同步
[转]inotify+rsync实现实时同步 1.1 什么是实时同步:如何实现实时同步 要利用监控服务(inotify),监控同步数据服务器目录中信息的变化 发现目录中数据产生变化,就利用rsync服 ...
- DataSnap ClientdataSet 三层中主从表的操作
非原创 摘自:http://hi.baidu.com/yagzh2000/blog/item/fc69df2cb9845de78b139946.html三层中主从表的操作(删除.新增.修改)一定要在 ...
- Mysql Binlog三种格式介绍及分析【转】
一.Mysql Binlog格式介绍 Mysql binlog日志有三种格式,分别为Statement,MiXED,以及ROW! 1.Statement:每一条会修改数据的sql都会记录在 ...
- jdk8系列一、jdk8 Lamda表达式语法、接口的默认方法和静态方法、supplier用法
一.简介 毫无疑问,Java 8是Java自Java 5(发布于2004年)之后的最重要的版本.这个版本包含语言.编译器.库.工具和JVM等方面的十多个新特性. 在本文中我们将学习这些新特性,并用实际 ...