Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

论文主要的三个贡献:

(1)       揭示了检测和对齐之间的内在联系;

(2)       提出了三个CNN级联的网络结构;

(3)       提出了一种对于样本的新的hard mining的算法;

整个算法流程如下:

Stage 1:采用全卷积神经网络,即P-Net,去获得候选窗体和边界回归向量。同时,候选窗体根据边界框进行校准。然后,利用NMS方法去除重叠窗体。

stage 2:R-Net,将经过P-Net确定的包含候选窗体的图片在R-Net网络中 训练,网络最后选用全连接的方式进行训练。利用边界框向量微调候选窗体,再利用NMS去除重叠窗体。

stage 3:O-Net,网络结构比R-Net多一层卷积,功能与R-Net作用一样,只是在去除重叠候选窗口的同时,显示五个人脸关键点定位。

训练

MTCNN特征描述子主要包含3个部分,人脸/非人脸分类器,边界框回归,地标定位。

人脸分类

上式为人脸分类的交叉熵损失函数,其中,pi为是人脸的概率,yidet为背景的真实标签。

边界框回归:

上式为通过欧氏距离计算的回归损失。其中,带尖的y为通过网络预测得到,不带尖的y为实际的真实的背景坐标。其中,y为一个(左上角x,左上角y,长,宽)组成的四元组。

地标定位:

和边界回归一样,还是计算网络预测的地标位置和实际真实地标的欧式距离,并最小化该距离。其中,,带尖的y为通过网络预测得到,不带尖的y为实际的真实的地标坐标。由于一共5个点,每个点2个坐标,所以,y属于十元组。

多个输入源的训练

整个的训练学习过程就是最小化上面的这个函数,其中,N为训练样本数量,aj表示任务的重要性,bj为样本标签,Lj为上面的损失函数。

还有一点注意的是:在训练过程中,为了取得更好的效果,作者采用了一种新的hard mining 策略,它是在线的,而目前大多数都是offline即检测完之后再进行mining。具体做法就是:每次前向传播完一个batch的样本之后,根据loss对这些样本进行排列,选择前70%的样本反向传播它们的梯度,即认为这70%的样本是hard sample,并且忽略剩下的30%的easy sample对网络优化的影响。
测试流程参见附图,对图像进行金字塔处理,笔者用的缩放系数是1.3,注意pnet是全图计算,得到的featureMap上每个点对应金字塔图上12*12的大小,然后是否通过分类阈值进行窗口合并(NMS)和人脸框位置矫正。在pnet和rnet阶段,笔者实验发现人脸框位置矫正在NMS之前能提高召回率,在onet阶段,为避免同一人脸输出多个框,将NMS操作放在人脸框位置矫正之后。

在训练过程中,y尖和y的交并集IoU(Intersection-over-Union)比例:

0-0.3:非人脸

0.65-1.00:人脸

0.4-0.65:Part人脸

0.3-0.4:地标

训练样本的比例,负样本:正样本:part样本:地标=3:1:1:2

《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》的更多相关文章

  1. [论文阅读] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks(MTCNN)

    相关论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 概论 用于人脸检测和对 ...

  2. 《Attention Augmented Convolutional Networks》注意力的神经网络

    paper: <Attention Augmented Convolutional Networks> https://arxiv.org/pdf/1904.09925.pdf 这篇文章是 ...

  3. 《DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks》研读笔记

    <DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks>研读笔记 论文标题:DSLR-Quality ...

  4. 谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》

    论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erx ...

  5. 声源定位之2精读《sound localization based on phase difference enhancement using deep neuarl networks》

    2.1.1 题目与摘要 1.为什么要增强IPD? The phase differences between the discrete Fourier transform (DFT) coeffici ...

  6. 论文讨论&&思考《Deformable Convolutional Networks》

    这篇论文真是让我又爱又恨,可以说是我看过的最认真也是最多次的几篇paper之一了,首先deformable conv的思想我觉得非常好,通过end-to-end的思想来做这件事也是极其的make se ...

  7. 《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》论文阅读

    背景简介 GCN的提出是为了处理非结构化数据(相对于image像素点而言).CNN处理规则矩形的网格像素点已经十分成熟,其最大的特点就是利用卷积进行①参数共享②局部连接,如下图: 那么类比到非结构数据 ...

  8. 论文解读 - Composition Based Multi Relational Graph Convolutional Networks

    1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi- ...

  9. 论文解读(Geom-GCN)《Geom-GCN: Geometric Graph Convolutional Networks》

    Paper Information Title:Geom-GCN: Geometric Graph Convolutional NetworksAuthors:Hongbin Pei, Bingzhe ...

随机推荐

  1. 【LOJ#6374】网格(二项式反演,容斥)

    [LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...

  2. [luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】

    题目描述 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢? 判断两棵树是否同构 ...

  3. emwin 之消息 WM_INIT_DIALOG

    @2018-08-09 小记 消息 WM_INIT_DIALOG 在创建窗口时首先发送且只在创建窗口时发送即只发送这一次

  4. 洛谷 P1110 [ZJOI2007]报表统计 解题报告

    P1110 [ZJOI2007]报表统计 题目描述 \(Q\)的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小\(Q\)希望可以帮妈妈分担一些工作,作为她的生日礼物之一. 经过仔细 ...

  5. 2019.3.18考试&2019.3.19考试&2019.3.21考试

    2019.3.18 C O D E T1 树上直接贪心,环上for一遍贪心 哇说的简单,码了将近一下午终于码出来了 感觉自己码力/写题策略太糟糕了,先是搞了一个细节太多的写法最后不得不弃疗了,然后第二 ...

  6. A1091. Acute Stroke

    One important factor to identify acute stroke (急性脑卒中) is the volume of the stroke core. Given the re ...

  7. 【洛谷P1230】智力大冲浪

    题目大意:给定 N 项任务,每项任务有一个截至完成时间,若在截止时间之后完成要罚款 \(w_i\) 元,最初有 M 元,怎样完成能够留下最多得钱. 题解:按照罚款从多到少贪心,在查找能够最晚完成一项任 ...

  8. AS3.0:给图片添加滤镜模糊与斜角效果

    滤镜可应用于任何显示对象(即,从 DisplayObject 类继承的对象), 例如 MovieClip.SimpleButton.TextField 和 Video 对象,以及 BitmapData ...

  9. Exception in thread "main" java.util.InputMismatchException

    今天写代码来了一个异常 /** * 需求分析:根据输入的天数是否是周六或是周日, * 并且天气的温度大于28摄氏度,则外出游泳,否则钓鱼 * @author chenyanlong * 日期:2017 ...

  10. 化工pdf下载

    Python爬虫视频教程零基础小白到scrapy爬虫高手-轻松入门 https://item.taobao.com/item.htm?spm=a1z38n.10677092.0.0.482434a6E ...