(原)Show, Attend and Translate: Unsupervised Image Translation with Self-Regularization and Attention
转载请注明出处:
https://www.cnblogs.com/darkknightzh/p/9333844.html
论文网址:https://arxiv.org/abs/1806.06195
在gan中,对图像进行风格变换时,一般都是将整个图像进行变换。由于图像包含前景和背景,因而该论文在保持背景区域不变的前提下,对前景区域进行风格变换。同时,使用self-regularization项来约束变换前后背景区域的差异。
网络结构如下图所示。输入图像通过2层的下采样,而后通过9层的残差网络,在通过2层的上采样,得到。另一方面,通过预训练的vgg-19网络的前几层,并通过2层的上采样,在通过conv+sigmoid,得到Gattn,即前景区域的概率图。网络基本结构均为conv+bn+relu。残差部分使用空洞卷积,因为空洞卷积可以增加感受野的大小。损失函数包含两部分,传统的判别器的损失及感知损失。文中指出,感知损失比传统的距离更接近人类对相似性的认知。传统的判别网络为5层的CNN网络。

其中,
$G(x)={{G}_{attn}}(x)\otimes {{G}_{0}}(x)+(1-{{G}_{attn}}(x))\otimes x$
${{G}_{attn}}(x)\otimes {{G}_{0}}(x)$代表前景区域,$(1-{{G}_{attn}}(x))\otimes x$代表背景区域。${{G}_{attn}}(x)$为前景区域的概率图,像素范围为[0, 1]。
文中判别器:
${{L}_{D}}=\log (D(y))-\log (1-D(G(x)))$
生成器:
${{L}_{G}}={{l}_{adv}}(G(x),y)+\lambda {{l}_{reg}}(x,G(x))$
生成器包含两部分,传统gan的损失:
${{l}_{adv}}(G(x),y)=-\log (-D(G(x)))$
及self-regularization项损失:
${{l}_{reg}}(G(x),x)=\sum\limits_{l=1,2,3}{\frac{1}{{{H}_{l}}{{W}_{l}}}\sum\limits_{h,w}{(\left\| {{w}_{l}}\circ (\hat{F}(x)_{hw}^{l}-\hat{F}(G(x))_{hw}^{l}) \right\|_{2}^{2})}}$
${{l}_{reg}}$使用预训练的vgg-19网络的前三层加权得到。分别将输入图像x及生成的图像$G(x)$通过vgg-19网络前3层,得到对应的特征图,并计算特征图的l2 norm的平方,之后进行加权。各层权重经过大量实验得到为:
$({{w}_{1}},{{w}_{2}},{{w}_{3}})=(1/32,1/16,1/8)$
训练过程:先训练${{G}_{0}}$,再训练${{G}_{attn}}$,最后finetune整个网络。对于$\lambda $,从0增加,直至对抗损失降低到阈值$l_{adv}^{t}$之下,而后固定$\lambda $。
(原)Show, Attend and Translate: Unsupervised Image Translation with Self-Regularization and Attention的更多相关文章
- Unsupervised Image-to-Image Translation Networks --- Reading Writing
Unsupervised Image-to-Image Translation Networks --- Reading Writing 2017.03.03 Motivations: most ex ...
- Phrase-Based & Neural Unsupervised Machine Translation基于短语非监督机器翻译
1. 前言 本文介绍一种无监督的机器翻译的模型.无监督机器翻译最早是<UNSUPERVISED NEURAL MACHINE TRANSLATION>提出.这个模型主要的特点,无需使用平行 ...
- MUNIT:Multimodal Unsupervised Image-to-Image Translation - 1 - 论文学习,不成对数据
摘要:无监督图像转换是计算机视觉领域中一个重要而又具有挑战性的问题.给定源域中的一幅图像,目标是学习目标域中对应图像的条件分布,而不需要看到任何对应图像对的例子.虽然这种条件分布本质上是多模态的,但现 ...
- Unsupervised Image-to-Image Translation Networks
Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化
Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归 R ...
- Unpaired/Partially/Unsupervised Image Captioning
这篇涉及到以下三篇论文: Unpaired Image Captioning by Language Pivoting (ECCV 2018) Show, Tell and Discriminate: ...
- 简单实现Python调用有道API接口(最新的)
# ''' # Created on 2018-5-26 # # @author: yaoshuangqi # ''' import urllib.request import urllib.pars ...
- (转)Autonomous_Vehicle_Paper_Reading_List
Autonomous_Vehicle_Paper_Reading_List 2018-07-19 10:40:08 Reference:https://github.com/ZRZheng/Auton ...
- [转]NLP Tasks
Natural Language Processing Tasks and Selected References I've been working on several natural langu ...
随机推荐
- ERP简介(一)
ERP是针对物资资源管理(物流).人力资源管理(人流).财务资源管理(财流).信息资源管理(信息流)集成一体化的企业管理软件 一:系统模块简介:
- Asp.NetWebForm的控件属性
一:GridView: 1.绑定ID 的值:DataKeyNames="Id", 2.自动产生列的意思:AutoGenerateColumns 3.如何注册脚本:ClientScr ...
- .NetCore下使用Prometheus实现系统监控和警报 (六)进阶Grafana集成自定义收集指标
Prometheus中包含了很多收集指标,那么我们怎来在Grafana中来使用呢? 接下来我们还是以之前自定义的来演示如图:我们在Prometheus中已经可以看到这个之前我们自定义的类型了 关于Gr ...
- [HDU] 5306 Gorgeous Sequence [区间取min&求和&求max]
题解: 线段树维护区间取min求和求max 维护最小值以及个数,次小值 标记清除时,分情况讨论 当lazy>max1 退出 当max1>lazy>max2(注意不要有等号) 更新 否 ...
- 【Java】 剑指offer(12) 机器人的运动范围
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 地上有一个m行n列的方格.一个机器人从坐标(0, 0)的格子开始移 ...
- jstl标签比较格式化后的时间
c:set 里面不支持任何标签,这样写不好讲格式化的值放到bdateVar里面 <c:set var="bdateVar" value="<fmt:forma ...
- python爬虫之分析Ajax请求抓取抓取今日头条街拍美图(七)
python爬虫之分析Ajax请求抓取抓取今日头条街拍美图 一.分析网站 1.进入浏览器,搜索今日头条,在搜索栏搜索街拍,然后选择图集这一栏. 2.按F12打开开发者工具,刷新网页,这时网页回弹到综合 ...
- 关于Maven打包Java Web项目以及热部署插件Jrebel的使用
Java Web/Eclipse/Maven/Tomcat 最近有个新项目是java web项目,记录一下,可能比较乱.虽然没接触过Java,但是eclipse还是用过的 初识项目 同事说,项目是ma ...
- ogg - 从oracle到mysql的同步
说明:这篇文章将介绍如何配置oracle到mysql的ogg同步 源端:ip-192.168.56.11 数据库类型-oracle 11.2.0.4目标端:ip-192.168.56.71 数据库类型 ...
- Win10 下 hadoop3.0.0 单机部署
前言 因近期要做 hadoop 有关的项目,需配置 hadoop 环境,简单起见就准备进行单机部署,方便开发调试.顺便记录下采坑步骤,方便碰到同样问题的朋友们. 安装步骤 一.下载 hadoop-XX ...