奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练
1、Torch构建简单的模型
# coding:utf-8
import torch class Net(torch.nn.Module):
def __init__(self,img_rgb=3,img_size=32,img_class=13):
super(Net, self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=img_rgb, out_channels=img_size, kernel_size=3, stride=1,padding= 1), #
torch.nn.ReLU(),
torch.nn.MaxPool2d(2),
# torch.nn.Dropout(0.5)
)
self.conv2 = torch.nn.Sequential(
torch.nn.Conv2d(28, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(64, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.dense = torch.nn.Sequential(
torch.nn.Linear(64 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, img_class)
) def forward(self, x):
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
res = conv3_out.view(conv3_out.size(0), -1)
out = self.dense(res)
return out CUDA = torch.cuda.is_available() model = Net(1,28,13)
print(model) optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.MultiLabelSoftMarginLoss()#nn.CrossEntropyLoss() if CUDA:
model.cuda() def batch_training_data(x_train,y_train,batch_size,i):
n = len(x_train)
left_limit = batch_size*i
right_limit = left_limit+batch_size
if n>=right_limit:
return x_train[left_limit:right_limit,:,:,:],y_train[left_limit:right_limit,:]
else:
return x_train[left_limit:, :, :, :], y_train[left_limit:, :]
2、奉献训练过程的代码
# coding:utf-8
import time
import os
import torch
import numpy as np
from data_processing import get_DS
from CNN_nework_model import cnn_face_discern_model
from torch.autograd import Variable
from use_torch_creation_model import optimizer, model, loss_func, batch_training_data,CUDA
from sklearn.metrics import accuracy_score os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' st = time.time()
# 获取训练集与测试集以 8:2 分割
x_,y_,y_true,label = get_DS() label_number = len(label) x_train,y_train = x_[:960,:,:,:].reshape((960,1,28,28)),y_[:960,:] x_test,y_test = x_[960:,:,:,:].reshape((340,1,28,28)),y_[960:,:] y_test_label = y_true[960:] print(time.time() - st)
print(x_train.shape,x_test.shape) batch_size = 100
n = int(len(x_train)/batch_size)+1 for epoch in range(100):
global loss
for batch in range(n):
x_training,y_training = batch_training_data(x_train,y_train,batch_size,batch)
batch_x,batch_y = Variable(torch.from_numpy(x_training)).float(),Variable(torch.from_numpy(y_training)).float()
if CUDA:
batch_x=batch_x.cuda()
batch_y=batch_y.cuda() out = model(batch_x)
loss = loss_func(out, batch_y) optimizer.zero_grad()
loss.backward()
optimizer.step()
# 测试精确度
if epoch%9==0:
global x_test_tst
if CUDA:
x_test_tst = Variable(torch.from_numpy(x_test)).float().cuda()
y_pred = model(x_test_tst) y_predict = np.argmax(y_pred.cpu().data.numpy(),axis=1) acc = accuracy_score(y_test_label,y_predict) print("loss={} aucc={}".format(loss.cpu().data.numpy(),acc))
3、总结
通过博主通过TensorFlow、keras、pytorch进行训练同样的模型同样的图像数据,结果发现,pyTorch快了很多倍,特别是在导入模型的时候比TensorFlow快了很多。合适部署接口和集成在项目中。
奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练的更多相关文章
- pytorch 8 CNN 卷积神经网络
# library # standard library import os # third-party library import torch import torch.nn as nn impo ...
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例
CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- day-16 CNN卷积神经网络算法之Max pooling池化操作学习
利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...
- cnn(卷积神经网络)比较系统的讲解
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之 ...
随机推荐
- Java分级考试
石家庄铁道大学选课管理系统 1.项目需求: 本项目所开发的学生选课系统完成学校对学生的选课信息的统计与管理,减少数据漏掉的情况,同时也节约人力.物力和财力.告别以往的人工统计. 2.系统要求与功能设计 ...
- LVS+Heartbeat安装部署文档
LVS+Heartbeat安装部署文档 发表回复 所需软件: ipvsadm-1.24-10.x86_64.rpmheartbeat-2.1.3-3.el5.centos.x86_64.rpmhear ...
- uniapp动态改变底部tabBar和导航标题navigationBarTitleText
在开发中,我们会遇到需求国际化,那么底部tabBar和导航标题navigationBarTitleText就要动态切换: 1.改变底部tabBar: uni.setTabBarItem({ index ...
- 【leetcode】1272. Remove Interval
题目如下: Given a sorted list of disjoint intervals, each interval intervals[i] = [a, b] represents the ...
- IntelliJ IDEA常用快捷键总结
之前开发项目一直用的是eclipse进行开发,近期在使用IDEA这个工具进行项目开发,之前在eclipse上能使用的快捷键方法放在IDEA上很多都不适用了,因此在此总结一下关于IDEA快捷键的使用方法 ...
- ubuntu+tomcat+jenkins+git+maven
1.下载tomcat.jdk和jenkins.war (下面通过wget下载的jdk-8u231-linux-x64.tar.gz不能用,需要本地下载后上传到服务器)解决Linux上解压jdk报错gz ...
- java8 base64编码和解码
package com.oy; import java.nio.charset.StandardCharsets; import java.util.Base64; import org.junit. ...
- python 正则表达式实例:
#!/usr/bin/python import re line = "Cats are smarter than dogs" matchObj = re.match( r'(.* ...
- android 支持发送空短信
method:A) AP端修改:1.将ComposeMessageActivity.java 中的 isPreparedForSending() 作如下修改(删掉的code也可以注释掉)private ...
- 我不熟悉的string类
我不常用的string函数 多的不说,直接上: assign函数 string& assign(const char *s); //把字符串s赋给当前的字符串 string& assi ...