[ZJOI2019]开关
以下的方案数默认是带权方案数。设\(P=\sum_{i=1}^np_i\)。
设\(F(x)\)为按\(i\)次开关后到达终止态的方案数的EGF,\(f\)为\(F\)的OGF,显然\(F(x)=\prod_{i=1}^n\frac{e^{\frac{p_ix}{P}}+(-1)^{s_i}e^{\frac{-p_ix}{P}}}{2}\)。初步的想法就是用\(f'(1)\)计算答案,但是这样是错误的,因为可能存在一些操作序列多次到达过终止态,这样就被重复计算了。设\(h(x)\)为按\(i\)次开关后第一次到达终止态的方案数的OGF,那么答案应该是\(h'(1)\)。
考虑怎样计算\(h\)。可以发现,\(f_i\)等于枚举一个前缀,使得进行完这个前缀的操作后第一次到达终止态,再进行剩下的操作回到这个原状态的方案数之和。设\(G\)为\(i\)次操作后回到原状态的方案数的EGF,\(g\)为\(G\)的OGF,显然\(G(x)=\prod_{i=1}^n\frac{e^{\frac{p_ix}{P}}+e^{\frac{-p_ix}{P}}}{2}\)。如果我们能求出\(f\)和\(g\),那么\(gh=f,h=\frac{f}{g}\)。
考虑将\(F\)表示为\(\sum_{i=-P}^Pa_ie^{\frac{ix}{p}}\)的形式,把\(e\)拆开,每一项乘上对应的阶乘,可以得到\(f=\frac{a_i}{1-\frac{ix}{p}}\)。\(G\)同理。考虑怎样求\(h'(1)\),用公式\((\frac{f}{g})'=\frac{f'g+g'f}{g^2}\)计算答案。但是把\(x=1\)代入\(f,g\)不收敛,所以把\(f,g\)同时乘上\(\prod_{i=-P}^P(1-\frac{ix}{p})\)。
剩下就是推式子的事了。
#include <bits/stdc++.h>
using namespace std;
const int N = 5e4 + 10;
const int mod = 998244353;
const int inv2 = (mod + 1) >> 1;
#define ms(a) memset(a,0,sizeof(a))
#define mc(a,b) memcpy(a,b,sizeof(a))
int n, s[N], p = 0, f[N << 1], g[N << 1], h[N << 1];
void inc(int &a, int b) {
a += b;
if(a >= mod) {
a -= mod;
}
}
int qpow(int a, int b) {
int ret = 1;
while(b) {
if(b & 1) {
ret = 1ll * ret * a % mod;
}
a = 1ll * a * a % mod, b >>= 1;
}
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", s + i);
}
f[N] = g[N] = 1;
for(int i = 1, x; i <= n; i++) {
scanf("%d", &x);
for(int j = -p; j <= p; j++) {
inc(h[j + x + N], 1ll * f[j + N]*inv2 % mod), inc(h[j - x + N], 1ll * f[j + N]*inv2 % mod * (s[i] ? mod - 1 : 1) % mod);
}
mc(f, h);
ms(h);
for(int j = -p; j <= p; j++) {
inc(h[j + x + N], 1ll * g[j + N]*inv2 % mod), inc(h[j - x + N], 1ll * g[j + N]*inv2 % mod);
}
mc(g, h);
ms(h);
p += x;
}
int ans = 0;
for(int i = -p; i < p; i++) {
inc(ans, 1ll * (g[i + N] - f[i + N] + mod)*qpow(p - i, mod - 2) % mod);
}
cout << 1ll * ans*p % mod*qpow(2, n) % mod;
return 0;
}
[ZJOI2019]开关的更多相关文章
- [ZJOI2019] 开关 (一种扩展性较高的做法)
[ZJOI2019] 开关 (一种扩展性较高的做法) 题意: 有n个开关,一开始状态都为关闭.每次随机选出一个开关将其状态改变,选出第i个开关的概率为${ p_i \over \sum_{i=1}^n ...
- [ZJOI2019]开关(生成函数+背包DP)
注:以下p[i]均表示概率 设F(x)为按i次开关后到达终止状态方案数的EGF,显然F(x)=π(ep[i]x/p+(-1)s[i]e-p[i]x/p)/2,然而方案包含一些多次到达合法方案的状态,需 ...
- Loj #3045. 「ZJOI2019」开关
Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过 ...
- 【loj3045】【ZJOI2019】开关
题目 \(n\)个开关,一开始处于关闭状态,你需要将他们按成\(s\)状态,按成了之后就停止操作; 每次按下开关的i概率为\(\frac{p_i}{\sum_{i=1}^{n}p_i}\) ,问期望步 ...
- 「ZJOI2019」开关
传送门 Description 有一些一开始全都是关的开关,每次随机选择一个(每个开关概率不同)开关并改变它的状态,问达到目标状态的期望步数 Solution \(P=\sum_{i=1}^{n}p ...
- UOJ#469. 【ZJOI2019】开关 生成函数
原文链接www.cnblogs.com/zhouzhendong/p/UOJ469.html 前言 clytql当场秒掉此题可惜不知道为什么fst了. 题解 考虑构建指数生成函数. 对于第 \(i\) ...
- LOJ 3045: 洛谷 P5326: 「ZJOI2019」开关
题目传送门:LOJ #3045. 题意简述 略. 题解 从高斯消元出发好像需要一些集合幂级数的知识,就不从这个角度思考了. 令 \(\displaystyle \dot p = \sum_{i = 1 ...
- ZJOI2019一轮游记
Preface 期待已久的省选终于开始了233,关于之前的一些内容,在ZJOI2019一轮停课刷题记录都可以找到,这里不再赘述 ZJOI2019,Bless All Day -1 今天难得有休息,昨晚 ...
- 手游聚合SDK开发之远程开关---渠道登入白名单
白名单有啥好说的呢?无非就是筛选登入,大家第一眼看到就是这个印象,白名单也是有文章的,弄的时机不同会给你带来很不错的收益,注意是收益.还是举例来说,游戏上线前渠道都会做一个预下载,一般提前1-2天,这 ...
随机推荐
- linux使用apache发布静态html网页
环境 centOS7+httpd 安装httpd 安装 #检查是否安装和httpd rpm -qa | grep httpd #如果没安装 yum -y install httpd 启动httpd并验 ...
- jmeter3.0+ant1.10+jenkins实现接口自动化并发送邮件
有很多关于接口自动化的文章,此篇仅用于记录自己的学习用.使用jmeter3.0+ant1.10+jenkins2.实现接口自动化并发送邮件,本篇是用的编写build文件来实现发送邮件,也可以用jenk ...
- 今天刚到货的小米平板2,就出现dnx fastboot mode一直卡死黑屏
http://bbs.xiaomi.cn/t-11786254 今天刚到货的小米平板2,就出现dnx fastboot mode一直卡死黑屏, 发表在晒机评测2015-11-30 14:22:57 来 ...
- 用C#调用C++DLL提示找不到DLL解决方法【转】
用C#调用自己写的C++ DLL(x64),总是提示找不到DLL,调试可以,发布release老是提示找不到DLL(dll文件确定存在) 原因:Visual C++的DLL分发方式没选:调试默认选择: ...
- Vagrant 入门 - 网络
原文地址 现在,我们启动了 web 服务器,并且通过同步目录使用宿主机上的文件提供服务.然而,还只能通过虚拟机中的终端访问服务器.这一章节中,我们会使用 Vagrant 的网络特性,配置 Vagran ...
- 使用定时器settimeout、setInterval执行能传递参数的函数
无论是window.setTimeout还是window.setInterval,在使用函数名作为调用句柄时都不能带参数,而在许多场合必须要带参数,这就需要想方法解决.经网上查询后整理如下: 例如对于 ...
- Grafana 下载与安装(v5.4.1)
官网地址: https://grafana.com/grafana/download Linux Ubuntu & Debian(64 Bit) SHA256: 3ccbdba9e7429f5 ...
- "源文件名长度大于文件系统支持的长度无法删除"的解决方案
import java.io.File; import java.io.IOException; import org.apache.commons.io.FileUtils; /** * @auth ...
- 工厂模式vs简单工厂
前言 工厂方法模式(Factory Method),定义一个用于创建对象的接口,让子类决定实例化哪一个类.工厂方法使一个类的实例化延迟到其子类. 简单工厂模式的最大优点在于工厂类中包含了必要的逻辑判断 ...
- [Codeforces 639F] Bear and Chemistry (Tarjan+虚树)(有详细注释)
[Codeforces 639F] Bear and Chemistry(Tarjan+虚树) 题面 给出一个n个点,m条边的无向图(不保证连通,可能有自环和重边),有q次询问,每次询问给出p个点和q ...