HDU 6614 AND Minimum Spanning
Time limit 1000 ms
Memory limit 131072 kB
OS Windows
中文题意
给一张n个点的无向完全图(输入一个n就完事了),每个点标号为1n,每条边的边权为它的两个端点的标号做按位与。现在要求这个图的最小生成树,输出这棵树以1为根时2n总共n-1个点的父亲节点的标号(为啥不是母亲)。要求在该树边权和最小的前提下,输出的数据字典序最小。
解题思路
以1为根,那就把1固定下来吧。
对于所有偶数点,肯定要以1为父亲,因为首先边权为0,其次因为字典序最小的要求,1是它们可以连到的编号最小的父亲。
对于所有奇数点,我们肯定希望它连接到父亲的边权是0,那么它和父亲的二进制位就不能有同时为1的地方。又因为字典序最小的要求,它能连接到的边权为0、标号最小的父亲是哪位呢?我们想到了lowbit,我们可以将该奇数点编号取反,然后强行将最高位符号位置0,再求lowbit,就得到了我们希望它连接的父亲。换句话说,一个奇数点x的父亲应该是
lowbit(0x7fffffff&(~x))
比如对于13号点,二进制为1101,它的父亲就应该是0010。还没完,假设总共有7个点,那么7号点的父亲是谁呢?按照上面的分析,应该是8号点,但是没有8号点,而且因为7的二进制是0111,无论连到其他哪个点上边权都不为0,所以要让权值最小,我们只能把这种理论父亲不存在的点连接到1号点。
源代码
#include<stdio.h>
int T;
int n;
long long sum;
int fa[200010];
inline int lowbit(int x){return x&-x;}
int main()
{
scanf("%d",&T);
while(T--)
{
sum=0;
scanf("%d",&n);
for(int i=2;i<=n;i+=2) fa[i]=1;
for(int i=3;i<=n;i+=2)
{
if(lowbit(i)==i) continue;
int lowzero=lowbit((~i)&0x7fffffff);//求理论父亲
if(lowzero>n) sum++,fa[i]=1;//理论父亲不存在
else fa[i]=lowzero;
}
printf("%d\n%d",sum,fa[2]);//这题卡PE艹
for(int i=3;i<=n;i++)
printf(" %d",fa[i]);
puts("");
}
return 0;
}
HDU 6614 AND Minimum Spanning的更多相关文章
- 多校 HDU - 6614 AND Minimum Spanning Tree (二进制)
传送门 AND Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- hdu 4408 Minimum Spanning Tree
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
随机推荐
- Python --链接MYSQL数据库与简单操作 含SSH链接
项目是软硬件结合,在缺少设备的情况,需要通过接口来模拟实现与设备的交互,其中就需要通过从数据库读取商品的ID信息 出于安全考虑 现在很多数据库都不允许通过直接访问,大多数是通过SSH SSH : 数 ...
- office问题解决办法汇总
1.Office2007或2010提示:您正试图运行的函数包含有宏或需要宏语言支持的内容 解决办法:word选项--加载项--管理com加载项--转到--把所有加载项删除 2.excel2010打开三 ...
- 初学node.js-nodejs中实现修改用户路由
经过前面几次的学习,已经可以做下小功能,今天要实现的是修改用户路由. 一.users_model.js 功能:定义用户对象模型 var mongoose=require('mongoose'), S ...
- Git入门资料
1.廖雪峰老师Git教程 地址:https://www.liaoxuefeng.com/wiki/896043488029600 2.Eclipse eGit连接GitHub教程 地址:https:/ ...
- [DS+Algo] 004 栈、队列及其代码实现
1. Stack FILO (FirstInLastOut) 的链表结构 在程序编译环境上使用较多 常用操作 push pop peek is_empty size Python 代码示例 class ...
- MySQL-快速入门(8)存储过程、存储函数
1.存储过程 1>创建存储过程:create procedure create procedure sp_name ([in | out | inout] param_name type) [c ...
- 小油2018 win7旗舰版64位GHOST版的,安装telnet客户端时,提示:出现错误。并非所有的功能被成功更改。
win7旗舰版64位GHOST版的,安装telnet客户端时,提示:出现错误.并非所有的功能被成功更改. 从安装成功的电脑上拷贝ghost版本缺少的文件,然后再安装telnet客户端,我已打包 链接: ...
- 2017沈阳区域赛Infinite Fraction Path(BFS + 剪枝)
Infinite Fraction Path Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java ...
- nodejs版实现properties后缀文件解析
1.propertiesParser.js let readline = require('readline'); let fs = require('fs'); // properties文件路径 ...
- Android真机测试时无法连接服务器
之前服务器的通信一直是在模拟机上实现的,今天用在真机上却不成功.百度之后发现是安卓9以后禁止使用HTTP直接访问服务器.记录一下以后使用. 参考博文:https://blog.csdn.net/don ...