字典树(Trie树)实现与应用(转)
一、概述
1、基本概念
字典树,又称为单词查找树,Tire数,是一种树形结构,它是一种哈希树的变种。
2、基本性质
- 根节点不包含字符,除根节点外的每一个子节点都包含一个字符
- 从根节点到某一节点。路径上经过的字符连接起来,就是该节点对应的字符串
- 每个节点的所有子节点包含的字符都不相同
3、应用场景
典型应用是用于统计,排序和保存大量的字符串(不仅限于字符串),经常被搜索引擎系统用于文本词频统计。
4、优点
利用字符串的公共前缀来减少查询时间,最大限度的减少无谓的字符串比较,查询效率比哈希树高。
二、构建过程
1、字典树节点定义

class TrieNode // 字典树节点
{
private int num;// 有多少单词通过这个节点,即由根至该节点组成的字符串模式出现的次数
private TrieNode[] son;// 所有的儿子节点
private boolean isEnd;// 是不是最后一个节点
private char val;// 节点的值 TrieNode()
{
num = 1;
son = new TrieNode[SIZE];
isEnd = false;
}
}

2、字典树构造函数
Trie() // 初始化字典树
{
root = new TrieNode();
}
3、建立字典树

// 建立字典树
public void insert(String str) // 在字典树中插入一个单词
{
if (str == null || str.length() == 0)
{
return;
}
TrieNode node = root;
char[] letters = str.toCharArray();//将目标单词转换为字符数组
for (int i = 0, len = str.length(); i < len; i++)
{
int pos = letters[i] - 'a';
if (node.son[pos] == null) //如果当前节点的儿子节点中没有该字符,则构建一个TrieNode并复值该字符
{
node.son[pos] = new TrieNode();
node.son[pos].val = letters[i];
}
else //如果已经存在,则将由根至该儿子节点组成的字符串模式出现的次数+1
{
node.son[pos].num++;
}
node = node.son[pos];
}
node.isEnd = true;
}

4、在字典树中查找是否完全匹配一个指定的字符串

// 在字典树中查找一个完全匹配的单词.
public boolean has(String str)
{
if(str==null||str.length()==0)
{
return false;
}
TrieNode node=root;
char[]letters=str.toCharArray();
for(int i=0,len=str.length(); i<len; i++)
{
int pos=letters[i]-'a';
if(node.son[pos]!=null)
{
node=node.son[pos];
}
else
{
return false;
}
}
//走到这一步,表明可能完全匹配,也可能部分匹配,如果最后一个字符节点为末端节点,则是完全匹配,否则是部分匹配
return node.isEnd;
}

5、前序遍历字典树

// 前序遍历字典树.
public void preTraverse(TrieNode node)
{
if(node!=null)
{
System.out.print(node.val+"-");
for(TrieNode child:node.son)
{
preTraverse(child);
}
}
}

6、计算单词前缀的数量

// 计算单词前缀的数量
public int countPrefix(String prefix)
{
if(prefix==null||prefix.length()==0)
{
return-1;
}
TrieNode node=root;
char[]letters=prefix.toCharArray();
for(int i=0,len=prefix.length(); i<len; i++)
{
int pos=letters[i]-'a';
if(node.son[pos]==null)
{
return 0;
}
else
{
node=node.son[pos];
}
}
return node.num;
}

完整代码:

package com.xj.test; public class Trie
{
private int SIZE = 26;
private TrieNode root;// 字典树的根 class TrieNode // 字典树节点
{
private int num;// 有多少单词通过这个节点,即由根至该节点组成的字符串模式出现的次数
private TrieNode[] son;// 所有的儿子节点
private boolean isEnd;// 是不是最后一个节点
private char val;// 节点的值 TrieNode()
{
num = 1;
son = new TrieNode[SIZE];
isEnd = false;
}
}
Trie() // 初始化字典树
{
root = new TrieNode();
} // 建立字典树
public void insert(String str) // 在字典树中插入一个单词
{
if (str == null || str.length() == 0)
{
return;
}
TrieNode node = root;
char[] letters = str.toCharArray();//将目标单词转换为字符数组
for (int i = 0, len = str.length(); i < len; i++)
{
int pos = letters[i] - 'a';
if (node.son[pos] == null) //如果当前节点的儿子节点中没有该字符,则构建一个TrieNode并复值该字符
{
node.son[pos] = new TrieNode();
node.son[pos].val = letters[i];
}
else //如果已经存在,则将由根至该儿子节点组成的字符串模式出现的次数+1
{
node.son[pos].num++;
}
node = node.son[pos];
}
node.isEnd = true;
} // 计算单词前缀的数量
public int countPrefix(String prefix)
{
if(prefix==null||prefix.length()==0)
{
return-1;
}
TrieNode node=root;
char[]letters=prefix.toCharArray();
for(int i=0,len=prefix.length(); i<len; i++)
{
int pos=letters[i]-'a';
if(node.son[pos]==null)
{
return 0;
}
else
{
node=node.son[pos];
}
}
return node.num;
} // 打印指定前缀的单词
public String hasPrefix(String prefix)
{
if (prefix == null || prefix.length() == 0)
{
return null;
}
TrieNode node = root;
char[] letters = prefix.toCharArray();
for (int i = 0, len = prefix.length(); i < len; i++)
{
int pos = letters[i] - 'a';
if (node.son[pos] == null)
{
return null;
}
else
{
node = node.son[pos];
}
}
preTraverse(node, prefix);
return null;
} // 遍历经过此节点的单词.
public void preTraverse(TrieNode node, String prefix)
{
if (!node.isEnd)
{
for (TrieNode child : node.son)
{
if (child != null)
{
preTraverse(child, prefix + child.val);
}
}
return;
}
System.out.println(prefix);
} // 在字典树中查找一个完全匹配的单词.
public boolean has(String str)
{
if(str==null||str.length()==0)
{
return false;
}
TrieNode node=root;
char[]letters=str.toCharArray();
for(int i=0,len=str.length(); i<len; i++)
{
int pos=letters[i]-'a';
if(node.son[pos]!=null)
{
node=node.son[pos];
}
else
{
return false;
}
}
//走到这一步,表明可能完全匹配,可能部分匹配,如果最后一个字符节点为末端节点,则是完全匹配,否则是部分匹配
return node.isEnd;
} // 前序遍历字典树.
public void preTraverse(TrieNode node)
{
if(node!=null)
{
System.out.print(node.val+"-");
for(TrieNode child:node.son)
{
preTraverse(child);
}
}
} public TrieNode getRoot()
{
return this.root;
} public static void main(String[]args)
{
Trie tree=new Trie();
String[]strs= {"banana","band","bee","absolute","acm",};
String[]prefix= {"ba","b","band","abc",};
for(String str:strs)
{
tree.insert(str);
}
System.out.println(tree.has("abc"));
tree.preTraverse(tree.getRoot());
System.out.println();
//tree.printAllWords();
for(String pre:prefix)
{
int num=tree.countPrefix(pre);
System.out.println(pre+"数量:"+num);
}
}
}

执行结果截图:
转自:https://www.cnblogs.com/xujian2014/p/5614724.html
字典树(Trie树)实现与应用(转)的更多相关文章
- 字典树(Trie树)的实现及应用
>>字典树的概念 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树.与二叉查找树不同,Trie树的 ...
- [POJ] #1002# 487-3279 : 桶排序/字典树(Trie树)/快速排序
一. 题目 487-3279 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 274040 Accepted: 48891 ...
- Atitit 常见的树形结构 红黑树 二叉树 B树 B+树 Trie树 attilax理解与总结
Atitit 常见的树形结构 红黑树 二叉树 B树 B+树 Trie树 attilax理解与总结 1.1. 树形结构-- 一对多的关系1 1.2. 树的相关术语: 1 1.3. 常见的树形结构 ...
- 洛谷$P4585\ [FJOI2015]$火星商店问题 线段树+$trie$树
正解:线段树+$trie$树 解题报告: 传送门$QwQ$ $umm$题目有点儿长我先写下题目大意趴$QwQ$,就说有$n$个初始均为空的集合和$m$次操作,每次操作为向某个集合内加入一个数$x$,或 ...
- luoguP6623 [省选联考 2020 A 卷] 树(trie树)
luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...
- [转载]字典树(trie树)、后缀树
(1)字典树(Trie树) Trie是个简单但实用的数据结构,通常用于实现字典查询.我们做即时响应用户输入的AJAX搜索框时,就是Trie开始.本质上,Trie是一颗存储多个字符串的树.相邻节点间的边 ...
- Luogu P2922 [USACO08DEC]秘密消息Secret Message 字典树 Trie树
本来想找\(01Trie\)的结果找到了一堆字典树水题...算了算了当水个提交量好了. 直接插入模式串,维护一个\(Trie\)树的子树\(sum\)大小,求解每一个文本串匹配时走过的链上匹配数和终点 ...
- 字典树 trie树 学习
一字典树 字典树,又称单词查找树,Trie树,是一种树形结构,哈希表的一个变种 二.性质 根节点不包含字符,除根节点以外的每一个节点都只包含一个字符: 从根节点到某一节点,路径上经过的字符串连接起 ...
- 【字符串算法】字典树(Trie树)
什么是字典树 基本概念 字典树,又称为单词查找树或Tire树,是一种树形结构,它是一种哈希树的变种,用于存储字符串及其相关信息. 基本性质 1.根节点不包含字符,除根节点外的每一个子节点都包含一个字符 ...
- 字典树 Trie树
什么是Trie树? 形如 其中从根节点到红色节点的路径上的字母所连成的字符串即为一个Trie树上所存的字符串. 比如,这个trie树上有ab,abc,bd,dda这些字符串. 至于怎么构建和查找或添加 ...
随机推荐
- 8.docker的系统资源限制
一. 概述 默认docker容器使用的memory资源和CPU资源是没有限制的,但是我们可以在docker run的时候通过选项去限制,具体参考官方文档. [root@node1 ~]# docker ...
- Mybatis入门教程之新增、更新、删除功能_java - JAVA
文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 上一节说了Mybatis的框架搭建和简单查询,这次我们来说一说用Mybatis进行基本的增删改操作: 一. 插入一条数据 ...
- 【leetcode】All Paths From Source to Target
题目如下: Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, a ...
- LeetCode--142--环形链表II(python)
给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 - ...
- 组件的属性props
组件的属性props 是不能自己改的,一般是从外面传进来.在组件的视图中用,this.props.XXX 表示该组件的XXX 属性
- R list和data frame 排序
pathway_name = rownames(g1) tm <- list('P-value' = c(), 'Pathway_name' = c()) :dim(g1)[]){ result ...
- JSP XML数据处理
JSP XML数据处理 当通过HTTP发送XML数据时,就有必要使用JSP来处理传入和流出的XML文档了,比如RSS文档.作为一个XML文档,它仅仅只是一堆文本而已,使用JSP创建XML文档并不比创建 ...
- jquery attr()方法获取input的checked属性问题
问题:经常使用jQuery插件的attr方法获取checked属性值,获取的值的大小为未定义,此时可以用prop方法获取其真实值,下面介绍这两种方法的区别: 1.通过prop方法获取checked属性 ...
- SVM 笔记整理
支持向量机 一.支持向量机综述 1.研究思路,从最特殊.最简单的情况开始研究 基本的线性的可分 SVM 解决二分类问题,是参数化的模型.定义类标记为 \(+1\) 和 \(-1\)(区别于感知机,感知 ...
- Broken pipe
出现broken pipe 的一种情况是向socket写数据,但是对端已经关闭socket连接,此时会触发SIGPIPE信号,该信号可以捕获. signal(SIGPIPE, SIG_IGN);