Transformation

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 10082    Accepted Submission(s): 2609

Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
 
Sample Output
307
7489
 
Source
 

题解

这道题有三种询问:set , add , mul。所以lazy标记要有三个,如果三个标记同时出现的处理方法——当更新set操作时,就把add标记和mul标记全部取消;当更新mul操作时,如果当前节点add标记存在,就把add标记改为:add * mul。这样的话就可以在PushDown()操作中先执行set,然后mul,最后add。

C++代码一

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn = ;
#define left v<<1
#define right v<<1|1
#define mod 10007
struct node
{
int l ,r , value ;
int eq , add , mul ;
}tree[maxn<<];
void build(int l , int r , int v)
{
tree[v].l = l ;
tree[v].r = r ;
tree[v].add = ; tree[v].mul = ;tree[v].eq = - ;
if(l == r)
{tree[v].eq = ; return ;}
int mid = (l + r) >> ;
build(l , mid , left) ;
build(mid + , r , right) ;
}
void push_down(int v)
{
if(tree[v].l == tree[v].r)return ;
if(tree[v].eq != -)
{
tree[left].eq = tree[right].eq = tree[v].eq ;
tree[left].add = tree[right].add = ;
tree[left].mul = tree[right].mul = ;
tree[v].eq = -;
return ;
}
if(tree[v].mul != )
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq*tree[v].mul)%mod ;
else
{
push_down(left) ;
tree[left].mul = (tree[left].mul*tree[v].mul)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq*tree[v].mul)%mod ;
else
{
push_down(right) ;
tree[right].mul = (tree[right].mul*tree[v].mul)%mod ;
}
tree[v].mul = ;
}
if(tree[v].add)
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq + tree[v].add)%mod ;
else
{
push_down(left) ;
tree[left].add = (tree[left].add + tree[v].add)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq + tree[v].add)%mod ;
else
{
push_down(right) ;
tree[right].add = (tree[right].add + tree[v].add)%mod ;
}
tree[v].add = ;
}
}
void update(int l , int r , int v , int op , int c)
{
if(l <= tree[v].l && tree[v].r <= r)
{
if(op == )
{
tree[v].add = ;tree[v].mul = ;
tree[v].eq = c ;
return ;
}
if(tree[v].eq != -)
{
if(op == )tree[v].eq = (tree[v].eq + c)%mod ;
else tree[v].eq = (tree[v].eq*c)%mod ;
}
else
{
push_down(v) ;
if(op == )tree[v].add = (tree[v].add + c)%mod ;
else tree[v].mul = (tree[v].mul*c)%mod ;
}
return ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l <= mid)update(l , r ,left , op , c) ;
if(r > mid)update(l , r , right , op , c) ;
}
int query(int l , int r , int v , int q)
{
if(tree[v].l >= l && tree[v].r <= r && tree[v].eq != -)
{
int ans = ;
for(int i = ;i <= q;i++)
ans = (ans * tree[v].eq)%mod ;
return (ans*((tree[v].r - tree[v].l + )%mod))%mod ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l > mid)return query(l , r , right, q) ;
else if(r <= mid)return query(l , r ,left ,q) ;
else return (query(l , mid , left , q) + query(mid + , r , right , q))%mod ;
}
int main()
{
//freopen("in.txt" ,"r" , stdin) ;
int n , m ;
while(scanf("%d%d" , &n , &m) &&(n+m))
{
int op , x , y , c;
build( , n , ) ;
while(m--)
{
scanf("%d%d%d%d" , &op , &x , &y , &c) ;
if(op == )
printf("%d\n" , (query(x, y , , c)%mod)) ;
else update(x , y , , op , c) ;
}
}
return ;
}

C++代码二

解释

  平方和这样来推:(a + c)2 = a2 + c2 + 2ac  , 即sum2[rt] = sum2[rt] + (r - l + 1) * c * c + 2 * sum1[rt] * c;

  立方和这样推:(a + c)3 = a3 + c3 + 3a(a2 + ac) , 即sum3[rt] = sum3[rt] + (r - l + 1) * c * c * c + 3 * c * (sum2[rt] + sum1[rt] * c);

  几个注意点:add标记取消的时候是置0,mul标记取消的时候是置1;在PushDown()中也也要注意取消标记,如set操作中取消add和mul,mul操作中更新add; 在add操作中要注意sum3 , sum2 , sum1的先后顺序,一定是先sum3 , 然后sum2 , 最后sum1; int容易爆,还是用LL要保险一点; 最后就是运算较多,不要漏掉东西。

当然这种方法有取巧的成分

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL __int64
typedef long long ll;
#define eps 1e-8
#define INF INT_MAX
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int MOD = ;
const int maxn = + ;
const int N = ;
ll add[maxn << ] , set[maxn << ] , mul[maxn << ];
ll sum1[maxn << ] , sum2[maxn << ] , sum3[maxn << ];
void PushUp(int rt)
{
sum1[rt] = (sum1[rt << ] + sum1[rt << | ]) % MOD;
sum2[rt] = (sum2[rt << ] + sum2[rt << | ]) % MOD;
sum3[rt] = (sum3[rt << ] + sum3[rt << | ]) % MOD;
}
void build(int l , int r , int rt)
{
add[rt] = set[rt] = ;
mul[rt] = ;
if(l == r) {
sum1[rt] = sum2[rt] = sum3[rt] = ;
return;
}
int m = (l + r) >> ;
build(lson);
build(rson);
PushUp(rt);
}
void PushDown(int rt , int len)
{
if(set[rt]) {
set[rt << ] = set[rt << | ] = set[rt];
add[rt << ] = add[rt << | ] = ; //注意这个也要下放
mul[rt << ] = mul[rt << | ] = ;
ll tmp = ((set[rt] * set[rt]) % MOD) * set[rt] % MOD;
sum1[rt << ] = ((len - (len >> )) % MOD) * (set[rt] % MOD) % MOD;
sum1[rt << | ] = ((len >> ) % MOD) * (set[rt] % MOD) % MOD;
sum2[rt << ] = ((len - (len >> )) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum2[rt << | ] = ((len >> ) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum3[rt << ] = ((len - (len >> )) % MOD) * tmp % MOD;
sum3[rt << | ] = ((len >> ) % MOD) * tmp % MOD;
set[rt] = ;
}
if(mul[rt] != ) { //这个就是mul[rt] != 1 , 当时我这里没注意所以TLE了
mul[rt << ] = (mul[rt << ] * mul[rt]) % MOD;
mul[rt << | ] = (mul[rt << | ] * mul[rt]) % MOD;
if(add[rt << ]) //注意这个也要下放
add[rt << ] = (add[rt << ] * mul[rt]) % MOD;
if(add[rt << | ])
add[rt << | ] = (add[rt << | ] * mul[rt]) % MOD;
ll tmp = (((mul[rt] * mul[rt]) % MOD * mul[rt]) % MOD);
sum1[rt << ] = (sum1[rt << ] * mul[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] * mul[rt]) % MOD;
sum2[rt << ] = (sum2[rt << ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum2[rt << | ] = (sum2[rt << | ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum3[rt << ] = (sum3[rt << ] % MOD) * tmp % MOD;
sum3[rt << | ] = (sum3[rt << | ] % MOD) * tmp % MOD;
mul[rt] = ;
}
if(add[rt]) {
add[rt << ] += add[rt]; //add是+= , mul是*=
add[rt << | ] += add[rt];
ll tmp = (add[rt] * add[rt] % MOD) * add[rt] % MOD; //注意sum3 , sum2 , sum1的先后顺序
sum3[rt << ] = (sum3[rt << ] + (tmp * (len - (len >> )) % MOD) + * add[rt] * ((sum2[rt << ] + sum1[rt << ] * add[rt]) % MOD)) % MOD;
sum3[rt << | ] = (sum3[rt << | ] + (tmp * (len >> ) % MOD) + * add[rt] * ((sum2[rt << | ] + sum1[rt << | ] * add[rt]) % MOD)) % MOD;
sum2[rt << ] = (sum2[rt << ] + ((add[rt] * add[rt] % MOD) * (len - (len >> )) % MOD) + ( * sum1[rt << ] * add[rt] % MOD)) % MOD;
sum2[rt << | ] = (sum2[rt << | ] + (((add[rt] * add[rt] % MOD) * (len >> )) % MOD) + ( * sum1[rt << | ] * add[rt] % MOD)) % MOD;
sum1[rt << ] = (sum1[rt << ] + (len - (len >> )) * add[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] + (len >> ) * add[rt]) % MOD;
add[rt] = ;
}
}
void update(int L , int R , int c , int ch , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(ch == ) {
set[rt] = c;
add[rt] = ;
mul[rt] = ;
sum1[rt] = ((r - l + ) * c) % MOD;
sum2[rt] = ((r - l + ) * ((c * c) % MOD)) % MOD;
sum3[rt] = ((r - l + ) * (((c * c) % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
mul[rt] = (mul[rt] * c) % MOD;
if(add[rt])
add[rt] = (add[rt] * c) % MOD;
sum1[rt] = (sum1[rt] * c) % MOD;
sum2[rt] = (sum2[rt] * (c * c % MOD)) % MOD;
sum3[rt] = (sum3[rt] * ((c * c % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
add[rt] += c;
ll tmp = (((c * c) % MOD * c) % MOD * (r - l + )) % MOD; //(r - l + 1) * c^3
sum3[rt] = (sum3[rt] + tmp + * c * ((sum2[rt] + sum1[rt] * c) % MOD)) % MOD;
sum2[rt] = (sum2[rt] + (c * c % MOD * (r - l + ) % MOD) + * sum1[rt] * c) % MOD;
sum1[rt] = (sum1[rt] + (r - l + ) * c) % MOD;
}
return;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
update(L , R , c , ch , rson);
else if(R <= m)
update(L , R , c , ch , lson);
else {
update(L , R , c , ch , lson);
update(L , R , c , ch , rson);
}
PushUp(rt);
}
ll query(int L , int R , int p , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(p == )
return sum1[rt] % MOD;
else if(p == )
return sum2[rt] % MOD;
else
return sum3[rt] % MOD;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
return query(L , R , p , rson);
else if(R <= m)
return query(L , R , p , lson);
else
return (query(L , R , p , lson) + query(L , R , p , rson)) % MOD;
}
int main()
{
int n , m;
int a , b , c , ch;
while(~scanf("%d %d" , &n , &m))
{
if(n == && m == )
break;
build( , n , );
while(m--) {
scanf("%d %d %d %d" , &ch , &a , &b , &c);
if(ch != ) {
update(a , b , c , ch , , n , );
} else {
printf("%lld\n" , query(a , b , c , , n , ));
}
}
}
return ;
}

Hdu 4578 Transformation (线段树 分类分析)的更多相关文章

  1. HDU 4578 Transformation --线段树,好题

    题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...

  2. hdu 4578 Transformation 线段树

    没什么说的裸线段树,注意细节就好了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...

  3. hdu 4578 Transformation 线段树多种操作裸题

    自己写了一个带结构体的WA了7.8次 但是测了几组小数据都对..感觉问题应该出在模运算那里.写完这波题解去对拍一下. 以后线段树绝不写struct!一般的struct都带上l,r 但是一条线段的长度确 ...

  4. Transformation HDU - 4578(线段树——懒惰标记的妙用)

    Yuanfang is puzzled with the question below: There are n integers, a 1, a 2, …, a n. The initial val ...

  5. hdu 4031 attack 线段树区间更新

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Subm ...

  6. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  7. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  8. HDU 4578 - Transformation - [加强版线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is puzzled with the ...

  9. HDU - 4578 Transformation(线段树区间修改)

    https://cn.vjudge.net/problem/HDU-4578 题意 4种操作,区间加,区间乘,区间变为一个数,求区间的和.平方和以及立方和. 分析 明显线段树,不过很麻烦..看kuan ...

随机推荐

  1. mysql FULL JOIN关键字 语法

    mysql FULL JOIN关键字 语法 作用:只要其中某个表存在匹配,FULL JOIN 关键字就会返回行.“富瑞华”牌大理石构件 语法:SELECT column_name(s) FROM ta ...

  2. html显示高亮c++

    配色与Devc++ 的classic plus 相同 输入文件名即可,输出在out.htm中 #include<bits/stdc++.h> #include<windows.h&g ...

  3. Codeforces Round #603 (Div. 2) E. Editor

    E. Editor 题目链接: https://codeforces.com/contest/1263/problem/E 题目大意: 输入一个字符串S1含有‘(’ , ‘)’ , ‘R’ , ‘L’ ...

  4. vue双向绑定原理(简单实现原理附demo)

    先上效果图 简单的实现数据的双向绑定首先来了解一个东西:Object.defineProperty() https://developer.mozilla.org/zh-CN/docs/Web/Jav ...

  5. 《SQL Server 2012 T-SQL基础》读书笔记 - 5.表表达式

    Chapter 5 Table Expressions 一个表表达式(table expression)是一个命名的查询表达式,代表一个有效的关系表.SQL Server包括4种表表达式:派生表(de ...

  6. oracle 如何更改密码的hash

    如何迁移oracle user的密码到新的环境,一下列出了方法: select name,spare4||';'||password pwd from sys.user$ where name = ' ...

  7. iOS环境搭建

    Xcode安装 一定要在App Store上下载XCode . git config常用配置 设置lg命令 查看分支图 git config --global alias.lg "log - ...

  8. What does the dot after dollar sign mean in jQuery when declaring variables?

    https://stackoverflow.com/questions/22156664/what-does-the-dot-after-dollar-sign-mean-in-jquery-when ...

  9. Beyond Compare4 激活

    当你使用过一段时间后会提示有问题,需要激活或者什么. 解决办法: 找到这个路径并删除其下Beyond Compare 4文件夹即可正常使用. C:\Users\******\AppData\Roami ...

  10. 2009年4月,Twitter宣布他们已经把大部分后端程序从Ruby迁移到Scala

    w Scala 简介 | 菜鸟教程  http://www.runoob.com/scala/scala-intro.html