Transformation

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 10082    Accepted Submission(s): 2609

Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
 
Sample Output
307
7489
 
Source
 

题解

这道题有三种询问:set , add , mul。所以lazy标记要有三个,如果三个标记同时出现的处理方法——当更新set操作时,就把add标记和mul标记全部取消;当更新mul操作时,如果当前节点add标记存在,就把add标记改为:add * mul。这样的话就可以在PushDown()操作中先执行set,然后mul,最后add。

C++代码一

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn = ;
#define left v<<1
#define right v<<1|1
#define mod 10007
struct node
{
int l ,r , value ;
int eq , add , mul ;
}tree[maxn<<];
void build(int l , int r , int v)
{
tree[v].l = l ;
tree[v].r = r ;
tree[v].add = ; tree[v].mul = ;tree[v].eq = - ;
if(l == r)
{tree[v].eq = ; return ;}
int mid = (l + r) >> ;
build(l , mid , left) ;
build(mid + , r , right) ;
}
void push_down(int v)
{
if(tree[v].l == tree[v].r)return ;
if(tree[v].eq != -)
{
tree[left].eq = tree[right].eq = tree[v].eq ;
tree[left].add = tree[right].add = ;
tree[left].mul = tree[right].mul = ;
tree[v].eq = -;
return ;
}
if(tree[v].mul != )
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq*tree[v].mul)%mod ;
else
{
push_down(left) ;
tree[left].mul = (tree[left].mul*tree[v].mul)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq*tree[v].mul)%mod ;
else
{
push_down(right) ;
tree[right].mul = (tree[right].mul*tree[v].mul)%mod ;
}
tree[v].mul = ;
}
if(tree[v].add)
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq + tree[v].add)%mod ;
else
{
push_down(left) ;
tree[left].add = (tree[left].add + tree[v].add)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq + tree[v].add)%mod ;
else
{
push_down(right) ;
tree[right].add = (tree[right].add + tree[v].add)%mod ;
}
tree[v].add = ;
}
}
void update(int l , int r , int v , int op , int c)
{
if(l <= tree[v].l && tree[v].r <= r)
{
if(op == )
{
tree[v].add = ;tree[v].mul = ;
tree[v].eq = c ;
return ;
}
if(tree[v].eq != -)
{
if(op == )tree[v].eq = (tree[v].eq + c)%mod ;
else tree[v].eq = (tree[v].eq*c)%mod ;
}
else
{
push_down(v) ;
if(op == )tree[v].add = (tree[v].add + c)%mod ;
else tree[v].mul = (tree[v].mul*c)%mod ;
}
return ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l <= mid)update(l , r ,left , op , c) ;
if(r > mid)update(l , r , right , op , c) ;
}
int query(int l , int r , int v , int q)
{
if(tree[v].l >= l && tree[v].r <= r && tree[v].eq != -)
{
int ans = ;
for(int i = ;i <= q;i++)
ans = (ans * tree[v].eq)%mod ;
return (ans*((tree[v].r - tree[v].l + )%mod))%mod ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l > mid)return query(l , r , right, q) ;
else if(r <= mid)return query(l , r ,left ,q) ;
else return (query(l , mid , left , q) + query(mid + , r , right , q))%mod ;
}
int main()
{
//freopen("in.txt" ,"r" , stdin) ;
int n , m ;
while(scanf("%d%d" , &n , &m) &&(n+m))
{
int op , x , y , c;
build( , n , ) ;
while(m--)
{
scanf("%d%d%d%d" , &op , &x , &y , &c) ;
if(op == )
printf("%d\n" , (query(x, y , , c)%mod)) ;
else update(x , y , , op , c) ;
}
}
return ;
}

C++代码二

解释

  平方和这样来推:(a + c)2 = a2 + c2 + 2ac  , 即sum2[rt] = sum2[rt] + (r - l + 1) * c * c + 2 * sum1[rt] * c;

  立方和这样推:(a + c)3 = a3 + c3 + 3a(a2 + ac) , 即sum3[rt] = sum3[rt] + (r - l + 1) * c * c * c + 3 * c * (sum2[rt] + sum1[rt] * c);

  几个注意点:add标记取消的时候是置0,mul标记取消的时候是置1;在PushDown()中也也要注意取消标记,如set操作中取消add和mul,mul操作中更新add; 在add操作中要注意sum3 , sum2 , sum1的先后顺序,一定是先sum3 , 然后sum2 , 最后sum1; int容易爆,还是用LL要保险一点; 最后就是运算较多,不要漏掉东西。

当然这种方法有取巧的成分

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL __int64
typedef long long ll;
#define eps 1e-8
#define INF INT_MAX
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int MOD = ;
const int maxn = + ;
const int N = ;
ll add[maxn << ] , set[maxn << ] , mul[maxn << ];
ll sum1[maxn << ] , sum2[maxn << ] , sum3[maxn << ];
void PushUp(int rt)
{
sum1[rt] = (sum1[rt << ] + sum1[rt << | ]) % MOD;
sum2[rt] = (sum2[rt << ] + sum2[rt << | ]) % MOD;
sum3[rt] = (sum3[rt << ] + sum3[rt << | ]) % MOD;
}
void build(int l , int r , int rt)
{
add[rt] = set[rt] = ;
mul[rt] = ;
if(l == r) {
sum1[rt] = sum2[rt] = sum3[rt] = ;
return;
}
int m = (l + r) >> ;
build(lson);
build(rson);
PushUp(rt);
}
void PushDown(int rt , int len)
{
if(set[rt]) {
set[rt << ] = set[rt << | ] = set[rt];
add[rt << ] = add[rt << | ] = ; //注意这个也要下放
mul[rt << ] = mul[rt << | ] = ;
ll tmp = ((set[rt] * set[rt]) % MOD) * set[rt] % MOD;
sum1[rt << ] = ((len - (len >> )) % MOD) * (set[rt] % MOD) % MOD;
sum1[rt << | ] = ((len >> ) % MOD) * (set[rt] % MOD) % MOD;
sum2[rt << ] = ((len - (len >> )) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum2[rt << | ] = ((len >> ) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum3[rt << ] = ((len - (len >> )) % MOD) * tmp % MOD;
sum3[rt << | ] = ((len >> ) % MOD) * tmp % MOD;
set[rt] = ;
}
if(mul[rt] != ) { //这个就是mul[rt] != 1 , 当时我这里没注意所以TLE了
mul[rt << ] = (mul[rt << ] * mul[rt]) % MOD;
mul[rt << | ] = (mul[rt << | ] * mul[rt]) % MOD;
if(add[rt << ]) //注意这个也要下放
add[rt << ] = (add[rt << ] * mul[rt]) % MOD;
if(add[rt << | ])
add[rt << | ] = (add[rt << | ] * mul[rt]) % MOD;
ll tmp = (((mul[rt] * mul[rt]) % MOD * mul[rt]) % MOD);
sum1[rt << ] = (sum1[rt << ] * mul[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] * mul[rt]) % MOD;
sum2[rt << ] = (sum2[rt << ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum2[rt << | ] = (sum2[rt << | ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum3[rt << ] = (sum3[rt << ] % MOD) * tmp % MOD;
sum3[rt << | ] = (sum3[rt << | ] % MOD) * tmp % MOD;
mul[rt] = ;
}
if(add[rt]) {
add[rt << ] += add[rt]; //add是+= , mul是*=
add[rt << | ] += add[rt];
ll tmp = (add[rt] * add[rt] % MOD) * add[rt] % MOD; //注意sum3 , sum2 , sum1的先后顺序
sum3[rt << ] = (sum3[rt << ] + (tmp * (len - (len >> )) % MOD) + * add[rt] * ((sum2[rt << ] + sum1[rt << ] * add[rt]) % MOD)) % MOD;
sum3[rt << | ] = (sum3[rt << | ] + (tmp * (len >> ) % MOD) + * add[rt] * ((sum2[rt << | ] + sum1[rt << | ] * add[rt]) % MOD)) % MOD;
sum2[rt << ] = (sum2[rt << ] + ((add[rt] * add[rt] % MOD) * (len - (len >> )) % MOD) + ( * sum1[rt << ] * add[rt] % MOD)) % MOD;
sum2[rt << | ] = (sum2[rt << | ] + (((add[rt] * add[rt] % MOD) * (len >> )) % MOD) + ( * sum1[rt << | ] * add[rt] % MOD)) % MOD;
sum1[rt << ] = (sum1[rt << ] + (len - (len >> )) * add[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] + (len >> ) * add[rt]) % MOD;
add[rt] = ;
}
}
void update(int L , int R , int c , int ch , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(ch == ) {
set[rt] = c;
add[rt] = ;
mul[rt] = ;
sum1[rt] = ((r - l + ) * c) % MOD;
sum2[rt] = ((r - l + ) * ((c * c) % MOD)) % MOD;
sum3[rt] = ((r - l + ) * (((c * c) % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
mul[rt] = (mul[rt] * c) % MOD;
if(add[rt])
add[rt] = (add[rt] * c) % MOD;
sum1[rt] = (sum1[rt] * c) % MOD;
sum2[rt] = (sum2[rt] * (c * c % MOD)) % MOD;
sum3[rt] = (sum3[rt] * ((c * c % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
add[rt] += c;
ll tmp = (((c * c) % MOD * c) % MOD * (r - l + )) % MOD; //(r - l + 1) * c^3
sum3[rt] = (sum3[rt] + tmp + * c * ((sum2[rt] + sum1[rt] * c) % MOD)) % MOD;
sum2[rt] = (sum2[rt] + (c * c % MOD * (r - l + ) % MOD) + * sum1[rt] * c) % MOD;
sum1[rt] = (sum1[rt] + (r - l + ) * c) % MOD;
}
return;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
update(L , R , c , ch , rson);
else if(R <= m)
update(L , R , c , ch , lson);
else {
update(L , R , c , ch , lson);
update(L , R , c , ch , rson);
}
PushUp(rt);
}
ll query(int L , int R , int p , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(p == )
return sum1[rt] % MOD;
else if(p == )
return sum2[rt] % MOD;
else
return sum3[rt] % MOD;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
return query(L , R , p , rson);
else if(R <= m)
return query(L , R , p , lson);
else
return (query(L , R , p , lson) + query(L , R , p , rson)) % MOD;
}
int main()
{
int n , m;
int a , b , c , ch;
while(~scanf("%d %d" , &n , &m))
{
if(n == && m == )
break;
build( , n , );
while(m--) {
scanf("%d %d %d %d" , &ch , &a , &b , &c);
if(ch != ) {
update(a , b , c , ch , , n , );
} else {
printf("%lld\n" , query(a , b , c , , n , ));
}
}
}
return ;
}

Hdu 4578 Transformation (线段树 分类分析)的更多相关文章

  1. HDU 4578 Transformation --线段树,好题

    题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...

  2. hdu 4578 Transformation 线段树

    没什么说的裸线段树,注意细节就好了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...

  3. hdu 4578 Transformation 线段树多种操作裸题

    自己写了一个带结构体的WA了7.8次 但是测了几组小数据都对..感觉问题应该出在模运算那里.写完这波题解去对拍一下. 以后线段树绝不写struct!一般的struct都带上l,r 但是一条线段的长度确 ...

  4. Transformation HDU - 4578(线段树——懒惰标记的妙用)

    Yuanfang is puzzled with the question below: There are n integers, a 1, a 2, …, a n. The initial val ...

  5. hdu 4031 attack 线段树区间更新

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Subm ...

  6. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  7. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  8. HDU 4578 - Transformation - [加强版线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is puzzled with the ...

  9. HDU - 4578 Transformation(线段树区间修改)

    https://cn.vjudge.net/problem/HDU-4578 题意 4种操作,区间加,区间乘,区间变为一个数,求区间的和.平方和以及立方和. 分析 明显线段树,不过很麻烦..看kuan ...

随机推荐

  1. C++ GUI Qt4学习笔记07

    C++ GUI Qt4   qtc++scrollobject编程 事件(event)是由串口系统或者Qt自身产生的,用以响应所发生的各类事情.当用户按下或者松开键盘或者鼠标上的按键时,就可以产生一个 ...

  2. 微信小程序支付功能讲解

    前言:虽然小程序做过很多,但是一直觉得微信支付功能很是神秘,现在终于有机会接触心里还是有点小激动的,经过一番折腾发现支付也不过如此,在此记录下支付功能的实现过程 小程序的官方文档介绍到发起微信支付即调 ...

  3. luogu P1068 分数线划定 x

    P1068 分数线划定 题目描述 世博会志愿者的选拔工作正在 A 市如火如荼的进行.为了选拔最合适的人才,A 市对 所有报名的选手进行了笔试,笔试分数达到面试分数线的选手方可进入面试.面试分数线根 据 ...

  4. ACM 求全排列(字典序、邻位对换、递增进位制数,递减进位制数)

    字典序:(联合康托展开就也可以按照中介数求) 邻位对换.递增进位制数,递减进位制数:具体的实现和算法讲解如下: 代码..C++版的实现并不好..因为是挨个向后找的,如果K很大的时候会超时,不过...思 ...

  5. flex兼容问题

    display:flex作为C3的新属性,还是有的浏览器不支持的,那下面我们就来说一下他的兼容写法 .box{ display: -webkit-box; /* 老版本语法: Safari, iOS, ...

  6. android 任务栈及启动模式

    1.一个应用程序一般都是由多个activity组成的.2.任务栈(task stack)(别名back stack后退栈) 记录存放用户开启的activity的.3.一个应用程序一被开启系统就给他分配 ...

  7. IDEA插件之自动查找bug工具

    打开idea 插件搜索界面 输入 FindBugs-IDEA,安装完成后重启,选中要查找的包,右键找到对应的 FindBugs就可以开始进行自动扫描了

  8. Linux驱动开发4——并发和竞态

    Linux系统处于一个高并发的运行环境,不管是系统调用还是中断都要求可重入,但是有一些系统资源处于临界区,因此,必须保证临界区资源访问的原子性. 对于临界区资源被占用时,发起访问的进程,有三种处理方法 ...

  9. websocket 无需通过轮询服务器的方式以获得响应 同步在线用户数 上线下线 抓包 3-way-handshake web-linux-shell 开发

    https://code.google.com/archive/p/phpwebsocket/source/default/source The WebSocket API (WebSockets) ...

  10. First-order logic

    w https://en.wikipedia.org/wiki/First-order_logic