Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody has ever said something bad about her, so who could've expected that Ada will be found dead in her house? Mr Gawry, world-famous detective, is appointed to find the criminal. He asked mm neighbours of Ada about clients who have visited her in that unlucky day. Let's number the clients from 11 to nn. Each neighbour's testimony is a permutation of these numbers, which describes the order in which clients have been seen by the asked neighbour.

However, some facts are very suspicious – how it is that, according to some of given permutations, some client has been seen in the morning, while in others he has been seen in the evening? "In the morning some of neighbours must have been sleeping!" — thinks Gawry — "and in the evening there's been too dark to see somebody's face...". Now he wants to delete some prefix and some suffix (both prefix and suffix can be empty) in each permutation, so that they'll be non-empty and equal to each other after that — some of the potential criminals may disappear, but the testimony won't stand in contradiction to each other.

In how many ways he can do it? Two ways are called different if the remaining common part is different.

Input

The first line contains two integers nn and mm (1≤n≤1000001≤n≤100000, 1≤m≤101≤m≤10) — the number of suspects and the number of asked neighbors.

Each of the next mm lines contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤n1≤ai≤n). It is guaranteed that these integers form a correct permutation (that is, each number from 11 to nn appears exactly once).

Output

Output a single integer denoting the number of ways to delete some prefix and some suffix of each permutation (possibly empty), such that the remaining parts will be equal and non-empty.

Examples

Input
3 2
1 2 3
2 3 1
Output
4
Input
5 6
1 2 3 4 5
2 3 1 4 5
3 4 5 1 2
3 5 4 2 1
2 3 5 4 1
1 2 3 4 5
Output
5
Input
2 2
1 2
2 1
Output
2

Note

In the first example, all possible common parts are [1][1], [2][2], [3][3] and [2,3][2,3].

In the second and third examples, you can only leave common parts of length 11.

题意:

给你k个互不相同的1~n的全排列,

求这k个排列有多少个公共子序列。

思路:

这题关键的一点是全排列的性质,每一个数都仅且出现1次。

利用这个性质,我们可以建立一个pre数组,a[i] [x ] 表示的是在第i个全排列中 x这个数前面的数。

那么我们只需要从一个全排列下手,来求他的子序列是否也是其他全部排列的子序列,

利用一个cnt变量来维护当前已经满足条件的子序列长度。

如果当前的全排列x前面的数y,其他的全排列中x前面的数也是y,那么cnt++,否则把cnt赋值为1,(一个数也是满足条件的子序列)

(上面用到的是组合数学的性质,即3个长度的序列有 3+2+1个子序列 那么维护的时候加起来也是1+2+3 )

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int pre[maxn];
int a[][];
int n,k;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n>>k;
repd(i,,k)
{
repd(j,,n)
{
cin>>pre[j];// pre数组中最终存的是最后一行的值
a[i][pre[j]]=pre[j-]; // a[i][j] 表示第i个全排列中,j之前的数
}
}
ll cnt=;
ll ans=;
repd(j,,n)
{
int isok=;
repd(i,,k-)
{
if(a[i][pre[j]]!=pre[j-])// 判断第i行中是否存在最后一行的第j 位和第j-1 位
{
isok=;
break;
}
}
if(isok)
{
cnt++;
}else
{
cnt=;
}
ans+=cnt;
}
cout<<ans<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}

Mysterious Crime CodeForces - 1043D (思维+组合数学)的更多相关文章

  1. Mysterious Crime CodeForces - 1043D (哈希)

    大意: 给定m个n排列, 求有多少个公共子串. 枚举每个位置, hash求出最大匹配长度. #include <iostream> #include <sstream> #in ...

  2. CodeForces 1043D Mysterious Crime 区间合并

    题目传送门 题目大意: 给出m个1-n的全排列,问这m个全排列中有几个公共子串. 思路: 首先单个的数字先计算到答案中,有n个. 然后考虑多个数字,如果有两个数字相邻,那么在m个串中必定都能找到这两个 ...

  3. [题解]Codeforces Round #519 - D. Mysterious Crime

    [题目] D. Mysterious Crime [描述] 有m个n排列,求一共有多少个公共子段. 数据范围:1<=n<=100000,1<=m<=10 [思路] 对于第一个排 ...

  4. 【Codeforces Round #519 by Botan Investments D】Mysterious Crime

    [链接] 我是链接,点我呀:) [题意] 相当于问你这m个数组的任意长度公共子串的个数 [题解] 枚举第1个数组以i为起点的子串. 假设i..j是以i开头的子串能匹配的最长的长度. (这个j可以给2. ...

  5. Codeforces Round #519 D - Mysterious Crime

    题目 题意: 在m组数,每组有n个数(数的范围1-n)中,找到某些序列 使它是每组数的一个公共子序列,问这样的某些序列的个数? 思路: 不难想出答案ans是≥n的. 创立一个next数组,使每组中第i ...

  6. D. Mysterious Crime

    链接 [http://codeforces.com/contest/1043/problem/D] 题意 给你一个m*n的矩阵(m<=10,n<=1e5), 每一行的数字是1到n里不同的数 ...

  7. Codeforces 424A (思维题)

    Squats Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  8. Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )

    On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...

  9. Codeforces 15E Triangles - 组合数学

    Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby fores ...

随机推荐

  1. LinkedList,ArrayList,Vector,HashMap,HashSet,HashTable之间的区别与联系

    在编写java程序中,我们最常用的除了八种基本数据类型,String对象外还有一个集合类,在我们的的程序中到处充斥着集合类的身影!java中集合大家族的成员实在是太丰富了,有常用的ArrayList. ...

  2. Icon 图标

    Icon 图标 提供了一套常用的图标集合. ¶使用方法 直接通过设置类名为 el-icon-iconName 来使用即可.例如: <i class="el-icon-edit" ...

  3. flutter 网络请求以及数据处理

    网络请求使用FutureBuilder来处理 import 'dart:convert'; Widget build(BuildContext context) { return FutureBuil ...

  4. mingw32环境上静态编译 dav1d 0.4.0

    2019-08-05 发布 dav1d 0.4.0 dav1d 'Cheetah', the fast and small AV1 decoder This is the fourth major r ...

  5. 正确关闭selinux

    .查看当前selinux的状态命令为 getenforce .两个都要关.注意先看看有么有这两个文件,如果没有就创建一个,否则后期会出现很多问题 cat > /etc/selinux/confi ...

  6. 一张图包含SEO一切要点

    看到一张好图 from http://www.rongyipiao.com/?p=8

  7. Python学习之表的数据类型

    数据类型 数值类型 类型 大小 范围(有符号) 范围(无符号)unsigned约束 用途 TINYINT 1 字节 (-128,127) (0,255) 小整数值 SMALLINT 2 字节 (-32 ...

  8. MySQL 服务正在启动 MySQL 服务无法启动解决途径

    解决方案: 1.删除自己手动创建的data文件夹: 2.管理员权限CMD的bin目录下,移除已错误安装的mysqld服务: mysqld -remove MySQL出现删除成功! 3.在CMD的bin ...

  9. c/c++ 链表实现

    //链表的基本用法代码实现/************************************************************************/ /* Created: ...

  10. XCode8.3真机调试设置

    本文使用XCode8.3.3 首先XCode->Preferncs,进入下面的界面 点击左下角“+”号,并输入账号,然后点击Manage Certificates,左下角添加IOS develo ...