Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody has ever said something bad about her, so who could've expected that Ada will be found dead in her house? Mr Gawry, world-famous detective, is appointed to find the criminal. He asked mm neighbours of Ada about clients who have visited her in that unlucky day. Let's number the clients from 11 to nn. Each neighbour's testimony is a permutation of these numbers, which describes the order in which clients have been seen by the asked neighbour.

However, some facts are very suspicious – how it is that, according to some of given permutations, some client has been seen in the morning, while in others he has been seen in the evening? "In the morning some of neighbours must have been sleeping!" — thinks Gawry — "and in the evening there's been too dark to see somebody's face...". Now he wants to delete some prefix and some suffix (both prefix and suffix can be empty) in each permutation, so that they'll be non-empty and equal to each other after that — some of the potential criminals may disappear, but the testimony won't stand in contradiction to each other.

In how many ways he can do it? Two ways are called different if the remaining common part is different.

Input

The first line contains two integers nn and mm (1≤n≤1000001≤n≤100000, 1≤m≤101≤m≤10) — the number of suspects and the number of asked neighbors.

Each of the next mm lines contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤n1≤ai≤n). It is guaranteed that these integers form a correct permutation (that is, each number from 11 to nn appears exactly once).

Output

Output a single integer denoting the number of ways to delete some prefix and some suffix of each permutation (possibly empty), such that the remaining parts will be equal and non-empty.

Examples

Input
3 2
1 2 3
2 3 1
Output
4
Input
5 6
1 2 3 4 5
2 3 1 4 5
3 4 5 1 2
3 5 4 2 1
2 3 5 4 1
1 2 3 4 5
Output
5
Input
2 2
1 2
2 1
Output
2

Note

In the first example, all possible common parts are [1][1], [2][2], [3][3] and [2,3][2,3].

In the second and third examples, you can only leave common parts of length 11.

题意:

给你k个互不相同的1~n的全排列,

求这k个排列有多少个公共子序列。

思路:

这题关键的一点是全排列的性质,每一个数都仅且出现1次。

利用这个性质,我们可以建立一个pre数组,a[i] [x ] 表示的是在第i个全排列中 x这个数前面的数。

那么我们只需要从一个全排列下手,来求他的子序列是否也是其他全部排列的子序列,

利用一个cnt变量来维护当前已经满足条件的子序列长度。

如果当前的全排列x前面的数y,其他的全排列中x前面的数也是y,那么cnt++,否则把cnt赋值为1,(一个数也是满足条件的子序列)

(上面用到的是组合数学的性质,即3个长度的序列有 3+2+1个子序列 那么维护的时候加起来也是1+2+3 )

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int pre[maxn];
int a[][];
int n,k;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n>>k;
repd(i,,k)
{
repd(j,,n)
{
cin>>pre[j];// pre数组中最终存的是最后一行的值
a[i][pre[j]]=pre[j-]; // a[i][j] 表示第i个全排列中,j之前的数
}
}
ll cnt=;
ll ans=;
repd(j,,n)
{
int isok=;
repd(i,,k-)
{
if(a[i][pre[j]]!=pre[j-])// 判断第i行中是否存在最后一行的第j 位和第j-1 位
{
isok=;
break;
}
}
if(isok)
{
cnt++;
}else
{
cnt=;
}
ans+=cnt;
}
cout<<ans<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}

Mysterious Crime CodeForces - 1043D (思维+组合数学)的更多相关文章

  1. Mysterious Crime CodeForces - 1043D (哈希)

    大意: 给定m个n排列, 求有多少个公共子串. 枚举每个位置, hash求出最大匹配长度. #include <iostream> #include <sstream> #in ...

  2. CodeForces 1043D Mysterious Crime 区间合并

    题目传送门 题目大意: 给出m个1-n的全排列,问这m个全排列中有几个公共子串. 思路: 首先单个的数字先计算到答案中,有n个. 然后考虑多个数字,如果有两个数字相邻,那么在m个串中必定都能找到这两个 ...

  3. [题解]Codeforces Round #519 - D. Mysterious Crime

    [题目] D. Mysterious Crime [描述] 有m个n排列,求一共有多少个公共子段. 数据范围:1<=n<=100000,1<=m<=10 [思路] 对于第一个排 ...

  4. 【Codeforces Round #519 by Botan Investments D】Mysterious Crime

    [链接] 我是链接,点我呀:) [题意] 相当于问你这m个数组的任意长度公共子串的个数 [题解] 枚举第1个数组以i为起点的子串. 假设i..j是以i开头的子串能匹配的最长的长度. (这个j可以给2. ...

  5. Codeforces Round #519 D - Mysterious Crime

    题目 题意: 在m组数,每组有n个数(数的范围1-n)中,找到某些序列 使它是每组数的一个公共子序列,问这样的某些序列的个数? 思路: 不难想出答案ans是≥n的. 创立一个next数组,使每组中第i ...

  6. D. Mysterious Crime

    链接 [http://codeforces.com/contest/1043/problem/D] 题意 给你一个m*n的矩阵(m<=10,n<=1e5), 每一行的数字是1到n里不同的数 ...

  7. Codeforces 424A (思维题)

    Squats Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  8. Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )

    On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...

  9. Codeforces 15E Triangles - 组合数学

    Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby fores ...

随机推荐

  1. java 深入HashTable

    在java中与有两个类都提供了一个多种用途的hashTable机制,他们都可以将可以key和value结合起来构成键值对通过put(key,value)方法保存起来,然后通过get(key)方法获取相 ...

  2. JavaWeb实现文件上传下载功能实例解析 (好用)

    转: JavaWeb实现文件上传下载功能实例解析 转:http://www.cnblogs.com/xdp-gacl/p/4200090.html JavaWeb实现文件上传下载功能实例解析 在Web ...

  3. python3.6+RF环境搭建

    现在大家都在用python3了,利用这个机会正好把自己的练习重新整理一遍,本篇记录用python3.6重新搭建关键字驱动环境 目录 1.安装python3.6 2.安装wxPython 3.安装rob ...

  4. UniEAP Platform V5.0建库

    create tablespace platform datafile 'platform.dbf' size 100M reuse autoextend on next 50M; . . drop ...

  5. git 新建项目的一些操作

    Command line instructions Git global setup git config --global user.name "Administrator" g ...

  6. LeetCode.914-一副牌中的X(X of a Kind in a Deck of Cards)

    这是悦乐书的第352次更新,第377篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第214题(顺位题号是914).在一副牌中,每张牌上都写有一个整数. 当且仅当您可以选择 ...

  7. java反射机制学习笔记

    内容引用自:https://www.cnblogs.com/wkrbky/p/6201098.html https://www.cnblogs.com/xumBlog/p/8882489.html,本 ...

  8. Elasticsearch-使用映射来定义各种文档

    ES-使用映射来定义各种文档 每篇文档属于一种类型,而每种类型属于一个索引.从数据的逻辑划分来看,可以认为索引是数据库,而类型是数据库中的表.类型包含了映射中每个字段的定义.映射包括了该类型的文档中可 ...

  9. [Python3] 028 常用模块 datetime

    目录 datetime 1. datetime.date 2. datetime.time 3. datetime.datetime 4. datetime.timedelta 补充 datetime ...

  10. Spring Boot解决无法访问图片的问题

    找了很多Spring Boot项目访问图片的解决方式,发现都是配置的,有时配置了也没有用.然后自己研究了一种简单操作的方法. 1,在Spring Boot的static目录下创建一个新目录img(或者 ...