行人重识别(ReID) ——基于MGN-pytorch进行可视化展示
下载MGN-pytorch:https://github.com/seathiefwang/MGN-pytorch
下载Market1501数据集:http://www.liangzheng.org/Project/project_reid.html
模型训练,修改demo.sh
,将 --datadir
修改已下载的Market1501数据集地址,将修改CUDA_VISIBLE_DEVICES=2,3
自己的GPU设备ID,将修改--nGPU
自己的GPU数量。
部分demo.sh示例:
#mAP: 0.9204 rank1: 0.9469 rank3: 0.9664 rank5: 0.9715 rank10: 0.9780 (Best: 0.9204 @epoch 4)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 160 --decay_type step_120_140 --loss 1*CrossEntropy+2*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_adam --nGPU 2 --lr 2e-4 --optimizer ADAM
CUDA_VISIBLE_DEVICES=0 python main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 8 --batchtest 16 --test_every 40 --epochs 160 --decay_type step_120_140 --loss 1*CrossEntropy+2*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_adam --nGPU 1 --lr 2e-4 --optimizer ADAM --save_models
CUDA_VISIBLE_DEVICES=0 python main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 8 --batchtest 8 --test_every 10 --epochs 10 --decay_type step_120_140 --loss 1*CrossEntropy+2*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_adam --nGPU 1 --lr 2e-4 --optimizer ADAM --test_only --resume -1 --load MGN_adam
#mAP: 0.9094 rank1: 0.9388 rank3: 0.9596 rank5: 0.9659 rank10: 0.9748 (Best: 0.9094 @epoch 4)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 160 --decay_type step_120_140 --loss 1*CrossEntropy+1*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_adam_1 --nGPU 2 --lr 1e-4 --optimizer ADAM
#mAP: 0.9217 rank1: 0.9460 rank3: 0.9653 rank5: 0.9706 rank10: 0.9801 (Best: 0.9217 @epoch 4)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 160 --decay_type step_120_140 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --re_rank --random_erasing --save MGN_adam_margin_1.2 --nGPU 2 --lr 2e-4 --optimizer ADAM
#mAP: 0.8986 rank1: 0.9356 rank3: 0.9567 rank5: 0.9620 rank10: 0.9727 (Best: 0.8986 @epoch 4)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 160 --decay_type step_120_140 --loss 1*CrossEntropy+2*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_adamax --nGPU 2 --lr 2e-4 --optimizer ADAMAX
#mAP: 0.5494 rank1: 0.7058 rank3: 0.7696 rank5: 0.8023 rank10: 0.8432 (Best: 0.5494 @epoch 4)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 160 --decay_type step_80_120 --loss 1*CrossEntropy+1*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_sgd --nGPU 2 --lr 1e-2 --optimizer SGD
#mAP: 0.8480 rank1: 0.9008 rank3: 0.9317 rank5: 0.9436 rank10: 0.9555 (Best: 0.8480 @epoch 3)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 120 --decay_type step_60_80 --loss 1*CrossEntropy+1*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_sgd_1 --nGPU 2 --lr 1e-2 --optimizer SGD
#mAP: 0.8455 rank1: 0.9032 rank3: 0.9350 rank5: 0.9433 rank10: 0.9537 (Best: 0.8455 @epoch 3)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 120 --decay_type step_60_80 --loss 1*CrossEntropy+1*Triplet --margin 1.2 --re_rank --random_erasing --save MGN_sgd_2 --nGPU 2 --lr 1e-2 --optimizer SGD
#mAP: 0.8979 rank1: 0.9376 rank3: 0.9569 rank5: 0.9623 rank10: 0.9745 (Best: 0.8979 @epoch 200)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 50 --epochs 200 --decay_type step_130_170 --loss 1*CrossEntropy+1*Triplet --margin 1.2 --re_rank --random_erasing --save sgd_1 --nGPU 2 --lr 1e-2 --optimizer SGD --reset
#mAP: 0.8053 rank1: 0.9228 rank3: 0.9581 rank5: 0.9676 rank10: 0.9804 (Best: 0.8054 @epoch 190)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --reset --batchid 16 --batchtest 32 --test_every 10 --epochs 200 --decay_type step_240_250 --loss 1*CrossEntropy+1*Triplet --margin 1.2 --save sgd_2 --nGPU 2 --lr 1e-2 --optimizer SGD --save_models --random_erasing --reset
#mAP: 0.8251 rank1: 0.9353 rank3: 0.9679 rank5: 0.9783 rank10: 0.9866 (Best: 0.8251 @epoch 200)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 10 --epochs 200 --decay_type step_240_250 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --random_erasing --save adam_1 --nGPU 2 --lr 2e-4 --optimizer ADAM --save_models
#mAP: 0.9097 rank1: 0.9442 rank3: 0.9614 rank5: 0.9679 rank10: 0.9751
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 100 --epochs 300 --decay_type step_250_290 --loss 1*CrossEntropy+1*Triplet --margin 1.2 --save sgd_3 --nGPU 2 --lr 1e-2 --optimizer SGD --save_models --random_erasing --reset --re_rank
#mAP: 0.9353 rank1: 0.9534 rank3: 0.9706 rank5: 0.9768 rank10: 0.9849
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 100 --epochs 300 --decay_type step_250_290 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --save adam_2 --nGPU 2 --lr 2e-4 --optimizer ADAM --save_models --random_erasing --reset --re_rank
#mAP: 0.9174 rank1: 0.9433 rank3: 0.9617 rank5: 0.9679 rank10: 0.9754
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 20 --epochs 300 --decay_type step_250_290 --loss 1*CrossEntropy+1*Triplet --margin 1.2 --save sgd_3 --nGPU 2 --lr 1e-2 --optimizer SGD --random_erasing --reset --re_rank --nesterov
#mAP: 0.9376 rank1: 0.9558 rank3: 0.9712 rank5: 0.9765 rank10: 0.9816
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 100 --epochs 300 --decay_type step_250_290 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --save adam_3 --nGPU 2 --lr 2e-4 --optimizer ADAM --random_erasing --reset --re_rank --amsgrad
CUDA_VISIBLE_DEVICES=0 python main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 8 --batchtest 32 --test_every 100 --epochs 300 --decay_type step_250_290 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --save adam_3 --nGPU 1 --lr 2e-4 --optimizer ADAM --random_erasing --reset --re_rank --amsgrad
CUDA_VISIBLE_DEVICES=0 python main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 20 --epochs 300 --decay_type step_250_290 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --save adam_3 --nGPU 1 --lr 2e-4 --optimizer ADAM --random_erasing --re_rank --load adam_3 --test_only --resume -1
#mAP: 0.9323 rank1: 0.9513 rank3: 0.9700 rank5: 0.9745 rank10: 0.9813
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 100 --epochs 300 --decay_type step_250_290 --loss 1*CrossEntropy+2*Triplet --margin 0.3 --save adam_1 --nGPU 2 --lr 2e-4 --optimizer ADAM --random_erasing --reset --re_rank --amsgrad
#mAP: 0.9270 rank1: 0.9510 rank3: 0.9691 rank5: 0.9751 rank10: 0.9810
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 50 --epochs 500 --decay_type step_300_420 --loss 1*CrossEntropy+1*Triplet --margin 1.2 --pool avg --save sgd_1 --nGPU 2 --lr 1e-2 --optimizer SGD --random_erasing --reset --re_rank --nesterov
#0.9383 rank1: 0.9578 rank3: 0.9721 rank5: 0.9783 rank10: 0.9843 (Best: 0.9383 @epoch 400)
#CUDA_VISIBLE_DEVICES=1 python3 main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 50 --epochs 400 --decay_type step_320_380 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --save adam_1 --nGPU 1 --lr 2e-4 --optimizer ADAM --random_erasing --reset --re_rank --amsgrad
CUDA_VISIBLE_DEVICES=0 python main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 50 --epochs 400 --decay_type step_320_380 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --save adam_1 --nGPU 1 --lr 2e-4 --optimizer ADAM --random_erasing --reset --re_rank --amsgrad
CUDA_VISIBLE_DEVICES=0 python main.py --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 50 --epochs 400 --decay_type step_320_380 --loss 1*CrossEntropy+2*Triplet --margin 1.2 --save adam_1 --nGPU 1 --lr 2e-4 --optimizer ADAM --random_erasing --re_rank --load adam_1 --test_only --resume -1
修改trainer.py
import os
import torch
import numpy as np
import utils.utility as utility
from scipy.spatial.distance import cdist
from utils.functions import cmc, mean_ap
from utils.re_ranking import re_ranking
import MyUtil
import scipy.io
import matplotlib
import matplotlib.pyplot as plt
class Trainer():
def __init__(self, args, model, loss, loader, ckpt):
self.args = args
self.train_loader = loader.train_loader
self.test_loader = loader.test_loader
self.query_loader = loader.query_loader
self.testset = loader.testset
self.queryset = loader.queryset
self.ckpt = ckpt
self.model = model
self.loss = loss
self.lr = 0.
self.optimizer = utility.make_optimizer(args, self.model)
self.scheduler = utility.make_scheduler(args, self.optimizer)
self.device = torch.device('cpu' if args.cpu else 'cuda')
if args.load != '':
self.optimizer.load_state_dict(
torch.load(os.path.join(ckpt.dir, 'optimizer.pt'))
)
for _ in range(len(ckpt.log)*args.test_every): self.scheduler.step()
def train(self):
self.scheduler.step()
self.loss.step()
epoch = self.scheduler.last_epoch + 1
lr = self.scheduler.get_lr()[0]
if lr != self.lr:
self.ckpt.write_log('[INFO] Epoch: {}\tLearning rate: {:.2e}'.format(epoch, lr))
self.lr = lr
self.loss.start_log()
self.model.train()
for batch, (inputs, labels) in enumerate(self.train_loader):
inputs = inputs.to(self.device)
labels = labels.to(self.device)
self.optimizer.zero_grad()
outputs = self.model(inputs)
loss = self.loss(outputs, labels)
loss.backward()
self.optimizer.step()
self.ckpt.write_log('\r[INFO] [{}/{}]\t{}/{}\t{}'.format(
epoch, self.args.epochs,
batch + 1, len(self.train_loader),
self.loss.display_loss(batch)),
end='' if batch+1 != len(self.train_loader) else '\n')
self.loss.end_log(len(self.train_loader))
def test(self):
epoch = self.scheduler.last_epoch + 1
self.ckpt.write_log('\n[INFO] Test:')
self.model.eval()
self.ckpt.add_log(torch.zeros(1, 5))
qf = self.extract_feature(self.query_loader).numpy()
gf = self.extract_feature(self.test_loader).numpy()
if self.args.re_rank:
q_g_dist = np.dot(qf, np.transpose(gf))
q_q_dist = np.dot(qf, np.transpose(qf))
g_g_dist = np.dot(gf, np.transpose(gf))
dist = re_ranking(q_g_dist, q_q_dist, g_g_dist)
else:
dist = cdist(qf, gf)
r = cmc(dist, self.queryset.ids, self.testset.ids, self.queryset.cameras, self.testset.cameras,
separate_camera_set=False,
single_gallery_shot=False,
first_match_break=True)
m_ap = mean_ap(dist, self.queryset.ids, self.testset.ids, self.queryset.cameras, self.testset.cameras)
self.ckpt.log[-1, 0] = m_ap
self.ckpt.log[-1, 1] = r[0]
self.ckpt.log[-1, 2] = r[2]
self.ckpt.log[-1, 3] = r[4]
self.ckpt.log[-1, 4] = r[9]
best = self.ckpt.log.max(0)
self.ckpt.write_log(
'[INFO] mAP: {:.4f} rank1: {:.4f} rank3: {:.4f} rank5: {:.4f} rank10: {:.4f} (Best: {:.4f} @epoch {})'.format(
m_ap,
r[0], r[2], r[4], r[9],
best[0][0],
(best[1][0] + 1)*self.args.test_every
)
)
print(not self.args.test_only)
if not self.args.test_only:
self.ckpt.save(self, epoch, is_best=((best[1][0] + 1)*self.args.test_every == epoch))
def fliphor(self, inputs):
inv_idx = torch.arange(inputs.size(3)-1,-1,-1).long() # N x C x H x W
return inputs.index_select(3,inv_idx)
def extract_feature(self, loader):
features = torch.FloatTensor()
for (inputs, labels) in loader:
ff = torch.FloatTensor(inputs.size(0), 2048).zero_()
for i in range(2):
if i==1:
inputs = self.fliphor(inputs)
input_img = inputs.to(self.device)
outputs = self.model(input_img)
f = outputs[0].data.cpu()
ff = ff + f
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
features = torch.cat((features, ff), 0)
return features
def terminate(self):
if self.args.test_only:
self.test()
return True
else:
epoch = self.scheduler.last_epoch + 1
return epoch >= self.args.epochs
def mytest(self):
gallery_cam,gallery_label = MyUtil.get_id(self.testset.imgs)
#print(gallery_label)
query_cam,query_label = MyUtil.get_id(self.queryset.imgs)
#print(gallery_cam,gallery_label)
self.ckpt.write_log('\n[INFO] MyTest:')
self.model.eval()
self.ckpt.add_log(torch.zeros(1, 5))
gf = self.extract_feature(self.test_loader).numpy()
qf = self.extract_feature(self.query_loader).numpy()
result = {'gallery_f':gf,'gallery_label':gallery_label,'gallery_cam':gallery_cam,'query_f':qf,'query_label':query_label,'query_cam':query_cam}
scipy.io.savemat('pytorch_result.mat',result)
self.ckpt.write_log('\n[OVER]')
def mydemo(self):
result = scipy.io.loadmat('pytorch_result.mat')
query_feature = torch.FloatTensor(result['query_f'])
query_cam = result['query_cam'][0]
query_label = result['query_label'][0]
gallery_feature = torch.FloatTensor(result['gallery_f'])
gallery_cam = result['gallery_cam'][0]
gallery_label = result['gallery_label'][0]
query_feature = query_feature.cuda()
gallery_feature = gallery_feature.cuda()
i = 2
index = MyUtil.sort_img(query_feature[i],query_label[i],query_cam[i],gallery_feature,gallery_label,gallery_cam)
# Visualize the rank result
query_path = self.queryset.imgs[i]
query_label = query_label[i]
print(query_path)
print('Top 10 images are as follow:')
try: # Visualize Ranking Result
# Graphical User Interface is needed
fig = plt.figure(figsize=(16,4))
ax = plt.subplot(1,11,1)
ax.axis('off')
MyUtil.imshow(query_path,'query')
for i in range(10):
ax = plt.subplot(1,11,i+2)
ax.axis('off')
img_path = self.testset.imgs[index[i]]
label = gallery_label[index[i]]
MyUtil.imshow(img_path)
if label == query_label:
ax.set_title('%d'%(i+1), color='green')
else:
ax.set_title('%d'%(i+1), color='red')
print(img_path)
except RuntimeError:
print('If you want to see the visualization of the ranking result, graphical user interface is needed.')
fig.savefig("show.png")
修改main.py
import data
import loss
import torch
import model
from trainer import Trainer
from option import args
import utils.utility as utility
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
ckpt = utility.checkpoint(args)
loader = data.Data(args)
model = model.Model(args, ckpt)
loss = loss.Loss(args, ckpt) if not args.test_only else None
trainer = Trainer(args, model, loss, loader, ckpt)
'''
n = 0
while not trainer.terminate():
n += 1
trainer.train()
if args.test_every!=0 and n%args.test_every==0:
trainer.test()
'''
#trainer.mytest()
trainer.mydemo()
新建MyUtil.py
'''
Created on 2018年10月30日
@author: hylink
'''
import argparse
import scipy.io
import torch
import numpy as np
import os
from torchvision import datasets
import matplotlib
import matplotlib.pyplot as plt
def get_id(img_path):
camera_id = []
labels = []
for path in img_path:
#filename = path.split('/')[-1]
filename = os.path.basename(path)
label = filename[0:4]
camera = filename.split('c')[1]
if label[0:2]=='-1':
labels.append(-1)
else:
labels.append(int(label))
camera_id.append(int(camera[0]))
return camera_id, labels
def imshow(path, title=None):
"""Imshow for Tensor."""
im = plt.imread(path)
plt.imshow(im)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# sort the images
def sort_img(qf, ql, qc, gf, gl, gc):
query = qf.view(-1,1)
# print(query.shape)
score = torch.mm(gf,query)
score = score.squeeze(1).cpu()
score = score.numpy()
# predict index
index = np.argsort(score) #from small to large
index = index[::-1]
# index = index[0:2000]
# good index
query_index = np.argwhere(gl==ql)
#same camera
camera_index = np.argwhere(gc==qc)
good_index = np.setdiff1d(query_index, camera_index, assume_unique=True)
junk_index1 = np.argwhere(gl==-1)
junk_index2 = np.intersect1d(query_index, camera_index)
junk_index = np.append(junk_index2, junk_index1)
mask = np.in1d(index, junk_index, invert=True)
index = index[mask]
return index
自定义检索结果集
查询结果集
注意:检索结果集的摄像头ID与查询结果集的摄像头ID必须不同,因为:可视化时自动过滤相同摄像头ID的图片
新建检索与查询底库
trainer.mytest()
检索效果测试
修改trainer.py 168行的i值
运行trainer.mydemo()
效果展示
Top 10 images are as follow:
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165107_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165100_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165114_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165106_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165115_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165105_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165058_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165113_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165059_01.jpg
/home/hylink/eclipse-workspace/reID/Market//bounding_box_test/0010_c1s1_165104_01.jpg
行人重识别(ReID) ——基于MGN-pytorch进行可视化展示的更多相关文章
- 行人重识别(ReID) ——基于深度学习的行人重识别研究综述
转自:https://zhuanlan.zhihu.com/p/31921944 前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视 ...
- 行人重识别(ReID) ——基于Person_reID_baseline_pytorch修改业务流程
下载Person_reID_baseline_pytorch地址:https://github.com/layumi/Person_reID_baseline_pytorch/tree/master/ ...
- 行人重识别(ReID) ——技术实现及应用场景
导读 跨镜追踪(Person Re-Identification,简称 ReID)技术是现在计算机视觉研究的热门方向,主要解决跨摄像头跨场景下行人的识别与检索.该技术能够根据行人的穿着.体态.发型等信 ...
- 行人重识别(ReID) ——数据集描述 DukeMTMC-reID
数据集简介 DukeMTMC 数据集是一个大规模标记的多目标多摄像机行人跟踪数据集.它提供了一个由 8 个同步摄像机记录的新型大型高清视频数据集,具有 7,000 多个单摄像机轨迹和超过 2,700 ...
- 行人重识别(ReID) ——数据集描述 Market-1501
数据集简介 Market-1501 数据集在清华大学校园中采集,夏天拍摄,在 2015 年构建并公开.它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄到的 1501 个行人.32668 个 ...
- 行人重识别(ReID) ——概述
什么是Re-ID? 行人重识别(Person re-identification,简称Re-ID)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术.广泛被认为是一个图像 ...
- 行人重识别(ReID) ——数据集描述 CUHK03
数据集简介 CUHK03是第一个足以进行深度学习的大规模行人重识别数据集,该数据集的图像采集于香港中文大学(CUHK)校园.数据以"cuhk-03.mat"的 MAT 文件格式存储 ...
- CVPR2020行人重识别算法论文解读
CVPR2020行人重识别算法论文解读 Cross-modalityPersonre-identificationwithShared-SpecificFeatureTransfer 具有特定共享特征变换 ...
- 行人重识别和车辆重识别(ReID)中的评测指标——mAP和Rank-k
1.mAP mAP的全称是mean Average Precision,意为平均精度均值(如果按照原来的顺利翻译就是平均均值精度).这个指标是多目标检测和多标签图像分类中长常用的评测指标,因为这类任务 ...
随机推荐
- C# 字符串的长度问题
string str = "aa奥奥"; 如果直接取 str.length,取的就是字符的长度,一个汉字也是一个字符,长度就是4. 一个汉字是两个字节,如果需要统计字节数,可以用下 ...
- Internet History, Technology, and Security(week5)——Technology: Internets and Packets
前言: 之前都在学习Internet的历史,从这周开始,进入到了Internet技术的学习. Layer1: Link Introduction / The Link Layer 80年代之前,主流网 ...
- Essential Java.《Java 编程要点》
Essential Java.<Java 编程要点> Essential Java, is a book about the Essentials of Java Programming. ...
- 存在不同浏览器间的JS兼容总结
2016年2月19日个人博客文章--迁移到segmentfault 当我们在编写JS用于处理事件时,由于考虑到不同浏览器间Js代码兼容不同,代码不易记忆,于是做出如下整理.(当然以后还会增加更新的.. ...
- oracle触发器update本表数据
功能: 1. 允许/限制对表的修改 2. 自动生成派生列,比如自增字段 3. 强制数据一致性 4. 提供审计和日志记录 5. 防止无效的事务处理 6. 启用复杂的业务逻辑 开始 create trig ...
- Linux驱动开发6——DDR内存分配
1.kmalloc和kfree #include <linux/slab.h> void *kmalloc(size_t size, int flags); flag: GFP_ATOMI ...
- ORACLE Physical Standby DG 之fail over
SQL> select thread#, low_sequence#, high_sequence# from v$archive_gap;确认下是否存在日志间隙,发现gap现象,说明failo ...
- ASP 数据库分页
<%@LANGUAGE="VBSCRIPT" CODEPAGE="936"%> <% Response.buffer=false %> ...
- Delphi XE2 之 FireMonkey 入门(17) - 特效
刚打开 XE2 时, 就从 Tool Palette 窗口的 Effects 组中发现洋洋洒洒的六十多个特效... 每个特效分别对应一个类, 分别来自 FMX.Effects 和 FMX.Filter ...
- linux环境常用分析日志的几个命令
前言: 分析日志是定位问题的常用手段,但实际线上可能有大量日志,掌握一些常见查看.过滤和分析日志的命令能起到事半功倍的效果.下面列出工作中最常用的一些命令,可在具体使用是查看,尝试使用.实际使用使往往 ...