分析

如果打爆搜的话可以拿60分。

首先知道期望是可以累加的,即i通过j去到k的期望,等于i去到j的期望加j去到k的期望。

所以令d[i]表示i的出度,F[i]表示从i到i的父亲的期望,G[i]表示i的父亲到i的期望,j表示i其中任意一个儿子,k表示i的父亲,l表示k其中任意一个儿子,e表示k的父亲。

很容易推出:

\[F[i]=\dfrac{1}{d[i]}+\dfrac{1}{d[i]}\sum(1+F[j]+F[i])
\]

\[G[i]=\dfrac{1}{d[k]}+\dfrac{1}{d[k]}(1+G[k]+G[i])+\dfrac{1}{d[k]}\sum(1+F[l]+G[i])
\]

简化后得

\[F[i]=\sum{F[j]}+d[i]
\]

\[G[i]=G[k]+\sum{F[l]}+d[k]
\]

然后分q次走,用倍增lca很容易算出vi到vi+1的期望,把期望累加就可以了。

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int d[600000],g[600000],f[600000],last[600000],next[600000],a[600000],dad[60000][50],deep[600000],fsum[600000],gsum[600000],m2[100];
int n,m,test,q,p,tot;
int bj(int x,int y)
{
next[++tot]=last[x];
last[x]=tot;
a[tot]=y;
d[x]++;
}
int dg(int x,int fa)
{
deep[x]=deep[fa]+1;
f[x]+=d[x];
for(int i=last[x];i;i=next[i])
{
if(a[i]!=fa)
{
dg(a[i],x);
f[x]+=f[a[i]];
}
}
}
int dg1(int x,int fa)
{
int allj=0;
for(int i=last[x];i;i=next[i])
{
if(a[i]!=fa)
{
allj+=f[a[i]];
}
}
for(int i=last[x];i;i=next[i])
{
if(a[i]!=fa)
{
g[a[i]]=d[x]+g[x]+allj-f[a[i]];
}
}
for(int i=last[x];i;i=next[i])
{
if(a[i]!=fa)
{
dg1(a[i],x);
}
}
}
int dg2(int x,int fa)
{
dad[x][0]=fa;
fsum[x]=fsum[fa]+f[x];
gsum[x]=gsum[fa]+g[x];
for(int i=last[x];i;i=next[i])
{
if(a[i]!=fa)
dg2(a[i],x);
}
}
int work(int x,int y,int z)
{
return fsum[x]-fsum[z]+gsum[y]-gsum[z];
}
int lca(int x,int y)
{
if(x==y) return 0;
int l=0;
if(deep[x]<deep[y])
{
l=x;
x=y;
y=l;
l=10000000;
}
int i,xx=x,yy=y,j;
if(deep[xx]>deep[yy])
{
j=int(log2(deep[xx]));
for(i=j;i>=0;i--)
{
if(deep[dad[xx][i]]>deep[yy])
{
xx=dad[xx][i];
}
}
xx=dad[xx][0];
}
if(xx==yy)
{
if(l==0) return work(x,y,xx);
else return work(y,x,xx);
}
j=int(log2(deep[xx]));
for(i=j;i>=0;i--)
{
if (dad[xx][i]!=dad[yy][i])
{
xx=dad[xx][i];
yy=dad[yy][i];
}
}
xx=dad[xx][0];
if(l==0) return work(x,y,xx);
else return work(y,x,xx);
}
int main()
{
int i,j,k,l,x,y;
m2[0]=1;
for(i=1;i<=20;i++)
m2[i]=m2[i-1]*2;
scanf("%d",&test);
while(test--)
{
scanf("%d",&n);
tot=0;
memset(d,0,sizeof(d));
memset(g,0,sizeof(g));
memset(f,0,sizeof(f));
memset(a,0,sizeof(a));
memset(last,0,sizeof(last));
memset(next,0,sizeof(next));
memset(dad,0,sizeof(dad));
memset(deep,0,sizeof(deep));
memset(fsum,0,sizeof(fsum));
memset(gsum,0,sizeof(gsum));
for(i=1;i<=n-1;i++)
{
scanf("%d%d",&x,&y);
bj(x,y);
bj(y,x);
}
deep[0]=0;
dg(0,0);
dg1(0,0);
dg2(0,0);
for(j=1;j<=int(log2(n));j++)
{
for(i=1;i<=n;i++)
{
dad[i][j]=dad[dad[i][j-1]][j-1];
}
}
scanf("%d",&q);
for(i=1;i<=q;i++)
{
int ans=0;
scanf("%d%d",&p,&x);
for(j=1;j<=p;j++)
{
scanf("%d",&y);
ans+=lca(x,y);
x=y;
}
printf("%d.0000\n",ans);
}
cout<<endl;
}
}

【宝藏】题解(五校联考3day1)的更多相关文章

  1. 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你

    [五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...

  2. 【五校联考1day2】JZOJ2020年8月12日提高组T1 对你的爱深不见底

    [五校联考1day2]JZOJ2020年8月12日提高组T1 对你的爱深不见底 题目 Description 出乎意料的是,幸运E 的小R 居然赢了那个游戏.现在欣喜万分的小R 想要写一张明信片给小Y ...

  3. 【C】题解 (五校联考3day2)

    分析 这道题看上去很恶心,实际上只用记录四坨东西就能打DP了:y坐标最小的向上射的点.y坐标最大的向下射的点.y坐标最大和最小的向右射的点,转移显然.注意,如果该状态的值为零就可以略过,否则会超时. ...

  4. NOIP2016提高A组五校联考3总结

    第一题,本来一开始就想到了数位dp,结果脑残地打了十几个转移方程,总是调试不出来,一气之下放弃了. 调第一题几乎调了整节比赛,第二第三都没它. 第二题连边找联通块. 第三题题解都打了三页,看都不想看. ...

  5. 【五校联考5day1】登山

    题目 描述 题目大意 给你一个n∗nn*nn∗n的网格图.从(0,0)(0,0)(0,0)开始,每次只可以向右或向上移动一格,并且不能越过对角线(即不能为x<yx<yx<y). 网格 ...

  6. 【2020五校联考NOIP #2】矩阵

    咕咕咕到现在~ 题面传送门 题意: 给出一个 \(n\times n\) 的矩阵 \(A\).要你求有多少个 \(n\times n\) 的矩阵 \(B\) 满足: 每一行都是 \(1\) 到 \(n ...

  7. 五校联考 running (欧拉函数)

    题面 \(solution:\) 讲真吧,这道题真的出得,嗯,太恐怖了.考场上这道题真的把我看懵了,这道题以前是见过的,但欧拉函数?我学过吗?一道容斥都要超时的题目,我都要为我自己点根香了,拿着gcd ...

  8. 【五校联考3day2】C

    題意: 現有一平面直角坐標系,有n個點,每一個點必須向某一個方向發射射線,且任意一條射線必須與某一條坐標軸平行.定義一種發射射線的方案是合法的,則方案必須滿足: 1.沒有一條射線交叉 2.沒有一條射線 ...

  9. 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)

    题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...

随机推荐

  1. datalist的模板里的label要绑定一个函数

    列下如何在前台绑定数据时呼叫後台方法 如下GetInfoByID是后台方法,Eval("ID").ToString()是你在前台绑定数据传入的字段名 <asp:Label I ...

  2. .net 部署到服务端IIS,Process调用exe程序无法运行问题解决

    场景: 开发某一功能将html内容转换为pdf,采用第三方插件wkhtmltopdf.exe进行转换.在本地调试正常运行,部署到服务端后文件没有正常生成. IIS中,Process打不开cmd程序,程 ...

  3. 【MM系列】SAP MM模块-科目分配的配置

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-科目分配的配置   ...

  4. python+selenium元素定位之XPath学习01

    参考文档1:https://www.w3school.com.cn/xpath/xpath_syntax.asp 参考文档2:https://www.runoob.com/xpath/xpath-tu ...

  5. Javascript实现的图片隐写术

    javascript图片隐写术,感觉可以用它来干点有想法的事情   1.什么是图片隐写术? 权威的wiki说法是“隐写术是一门关于信息隐藏的技巧与科学,所谓信息隐藏指的是不让除预期的接收者之外的任何人 ...

  6. Spring Boot 2.2.0 正式发布,支持 JDK 13!

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 推荐阅读: Spring Boot 2.2.0 正式发布了,可从 repo.spring.io 或是 Maven Centr ...

  7. 如何将数据库导入到本地MySQL

    有两个方法:(1)在MySQL的客户端进行导入,比如: http://jingyan.baidu.com/article/6dad507517c11aa123e36ea0.html (2)方法:常用s ...

  8. java流stream中的collect()方法详解

    public class StreamTest { /** * stream.collect() 的本质由三个参数构成, * 1. Supplier 生产者, 返回最终结果 * 2. BiConsum ...

  9. Python 自定义三方库

    一.注册一个pypi账号 https://pypi.org/ 二.github上创建一个项目 https://github.com/ 三.编写自己的python项目 项目结构(参考):https:// ...

  10. Kali Linux安装及中文指南

    Kali Linux安装及中文指南 Kali Linux安装教程:https://blog.csdn.net/u012318074/article/details/71601382 Kali Linu ...