题目

众所周知,除数个数函数\(\sigma_0=I^2\),\(I\)就是狄利克雷卷积里的\(1\)函数

于是熟悉狄利克雷卷积的话很快就能看出我们要求的就是\(I\times I^{k}\),即\(I^{k+1}\),我们给这个函数起一个名字叫\(f^{k+1}\)

显然这个东西是积性函数,于是我们考虑一下指数次幂的\(f\)如何求

显然

\[f^{k+1}(n)=\sum_{d|n}f^{k}(d)
\]

对于指数次幂\(p^m\)

\[f^{k+1}(p^m)=\sum_{i=0}^mf^k(p^i)
\]

我们考虑一下快速求\(f^{k+1}(p^m)\),发现就是就是把这\(m\)次幂分配到\(k+1\)次减少的机会里去,当然最后不一定减少到\(0\),于是等价于把\(m\)个球分给\(k+2\)个盒子,允许为空,插板一下得知这个是\(\binom{k+m+1}{m+1}\),我们发现这个组合数非常好算,于是直接暴力就好了,由于又是积性函数,我们分解质因数之后直接合并就可以了

代码

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define min std::min
#define LL long long
const int maxn=1e7+5;
const int mod=998244353;
int f[maxn],p[maxn>>2],inv[505];
LL n,m;int T,ans=1;
inline int C(LL n,int m) {
int now=1;
for(re int i=n;i>=n-m+1;--i) now=1ll*now*(i%mod)%mod;
for(re int i=1;i<=m;i++) now=1ll*now*inv[i]%mod;
return now;
}
int main() {
scanf("%lld%lld",&n,&m);inv[1]=1;
for(re int i=2; i<505; i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
f[1]=1;T=std::sqrt(n)+1;T=min(T,maxn-1);
for(re int i=2;i<=T;i++) {
if(!f[i]) p[++p[0]]=i;
for(re int j=1;j<=p[0]&&p[j]*i<=T;j++) {
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
p[++p[0]]=1e9+7,p[++p[0]]=998244353,p[++p[0]]=1e9+9;
for(re int i=1;i<=p[0];i++) {
int t=0;
while(n%p[i]==0) n/=p[i],t++;
if(!t) continue;
ans=1ll*ans*C((t+m+1)%mod,t)%mod;
}
if(n!=1) ans=1ll*ans*C(m+2,1)%mod;
printf("%d\n",ans);
return 0;
}

【LGP4714】「数学」约数个数和的更多相关文章

  1. 洛谷 P4714 「数学」约数个数和 解题报告

    P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点 ...

  2. luogu 6月月赛 E 「数学」约数个数和

    题面在这里! 第一眼感觉炒鸡水啊...只要把N质因数分解一下,因为k次约数相当于求k+2元一次方程的非负整数解,所以答案就是和每个质因子指数有关的一些组合数乘起来. 但是要用pillard's rho ...

  3. P4714 「数学」约数个数和

    题解: 会了Miller-Rabin这题就很简单了 首先这种题很容易想到质因数分解 但是暴力根号算法是不行的 所以要用到 Miller-Rabin素数 https://blog.csdn.net/lt ...

  4. 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」

    题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...

  5. 「10.8」simple「数学」·walk「树上直径」

    A. Simple 本来以为很难,考场瞎推了推好像会了...... 想起小凯的诱惑,迷?? 首先$n$,$m$,$q$同除$gcd(n,m)$,显然$q$以内的数假如不是$gcd$的倍数,那么一定不能 ...

  6. Codeforces 626E Simple Skewness 「数学」「二分」

    题意: 给你一堆无序数,寻找它的一个子堆,使得子堆的平均数减中位数最大. 数字的个数n<=2e5 0<=xi<=1e6. 思路: 首先可以证明这堆数一定是奇数个,证明方法是尝试在奇数 ...

  7. Loj 3058. 「HNOI2019」白兔之舞

    Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...

  8. 「MoreThanJava」计算机发展史—从织布机到IBM

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  9. 「MoreThanJava」一文了解二进制和CPU工作原理

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

随机推荐

  1. scala对象简单记录

    object Person { private val eyeNum = 2 def getEyeNum = eyeNum def main(args: Array[String]): Unit = ...

  2. sublime快捷键汇总

    Sublime Text 3 快捷键精华版 Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所 ...

  3. Download Blackarch Linux

    https://www.blackarch.org/

  4. Dart编程数据类型

    编程语言最基本的特征之一是它支持的数据类型集.这些是可以用编程语言表示和操作的值的类型. Dart语言支持以下类型 数字 字符串 布尔 列表list map 数字 Dart中的数字用于表示数字文字.D ...

  5. Session监听类HttpSessionListener介绍及在listener里取得request

    Session监听类HttpSessionListener介绍及在listener里取得request servlet-api.jar中提供了监听类HttpSessionListener,主要方法有两 ...

  6. NX二次开发-C++的vector用法

    #include <algorithm> //vector排序去重 sort( BoxNum.begin(), BoxNum.end()); BoxNum.erase(unique(Box ...

  7. (转)ab(apachebench)测试与loadrunner

    转:http://blog.csdn.net/gzh0222/article/details/7172341 ab的全称是ApacheBench,是 Apache 附带的一个小工具,专门用于 HTTP ...

  8. NtOpenProcess被HOOK,跳回原函数地址后仍然无法看到进程

    点击打开链接http://www.ghoffice.com/bbs/read-htm-tid-103923.html

  9. 1.1两个char类型数据相加后,转化为int类型

    #include<stdio.h> main() { char a = 127; char i=0; char ai=0; ai= a+i; printf("size short ...

  10. scrapy的使用-scrapy shell

    进入     该目录下执行scrapy shell 文件, 在命令行可执行该文件中链接的xpath语法,和BeautifulSoup语法.