【LGP4714】「数学」约数个数和
众所周知,除数个数函数\(\sigma_0=I^2\),\(I\)就是狄利克雷卷积里的\(1\)函数
于是熟悉狄利克雷卷积的话很快就能看出我们要求的就是\(I\times I^{k}\),即\(I^{k+1}\),我们给这个函数起一个名字叫\(f^{k+1}\)
显然这个东西是积性函数,于是我们考虑一下指数次幂的\(f\)如何求
显然
\]
对于指数次幂\(p^m\)
\]
我们考虑一下快速求\(f^{k+1}(p^m)\),发现就是就是把这\(m\)次幂分配到\(k+1\)次减少的机会里去,当然最后不一定减少到\(0\),于是等价于把\(m\)个球分给\(k+2\)个盒子,允许为空,插板一下得知这个是\(\binom{k+m+1}{m+1}\),我们发现这个组合数非常好算,于是直接暴力就好了,由于又是积性函数,我们分解质因数之后直接合并就可以了
代码
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define min std::min
#define LL long long
const int maxn=1e7+5;
const int mod=998244353;
int f[maxn],p[maxn>>2],inv[505];
LL n,m;int T,ans=1;
inline int C(LL n,int m) {
int now=1;
for(re int i=n;i>=n-m+1;--i) now=1ll*now*(i%mod)%mod;
for(re int i=1;i<=m;i++) now=1ll*now*inv[i]%mod;
return now;
}
int main() {
scanf("%lld%lld",&n,&m);inv[1]=1;
for(re int i=2; i<505; i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
f[1]=1;T=std::sqrt(n)+1;T=min(T,maxn-1);
for(re int i=2;i<=T;i++) {
if(!f[i]) p[++p[0]]=i;
for(re int j=1;j<=p[0]&&p[j]*i<=T;j++) {
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
p[++p[0]]=1e9+7,p[++p[0]]=998244353,p[++p[0]]=1e9+9;
for(re int i=1;i<=p[0];i++) {
int t=0;
while(n%p[i]==0) n/=p[i],t++;
if(!t) continue;
ans=1ll*ans*C((t+m+1)%mod,t)%mod;
}
if(n!=1) ans=1ll*ans*C(m+2,1)%mod;
printf("%d\n",ans);
return 0;
}
【LGP4714】「数学」约数个数和的更多相关文章
- 洛谷 P4714 「数学」约数个数和 解题报告
P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点 ...
- luogu 6月月赛 E 「数学」约数个数和
题面在这里! 第一眼感觉炒鸡水啊...只要把N质因数分解一下,因为k次约数相当于求k+2元一次方程的非负整数解,所以答案就是和每个质因子指数有关的一些组合数乘起来. 但是要用pillard's rho ...
- P4714 「数学」约数个数和
题解: 会了Miller-Rabin这题就很简单了 首先这种题很容易想到质因数分解 但是暴力根号算法是不行的 所以要用到 Miller-Rabin素数 https://blog.csdn.net/lt ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 「10.8」simple「数学」·walk「树上直径」
A. Simple 本来以为很难,考场瞎推了推好像会了...... 想起小凯的诱惑,迷?? 首先$n$,$m$,$q$同除$gcd(n,m)$,显然$q$以内的数假如不是$gcd$的倍数,那么一定不能 ...
- Codeforces 626E Simple Skewness 「数学」「二分」
题意: 给你一堆无序数,寻找它的一个子堆,使得子堆的平均数减中位数最大. 数字的个数n<=2e5 0<=xi<=1e6. 思路: 首先可以证明这堆数一定是奇数个,证明方法是尝试在奇数 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
- 「MoreThanJava」计算机发展史—从织布机到IBM
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
- 「MoreThanJava」一文了解二进制和CPU工作原理
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...
随机推荐
- python 相关操作
json转字典: #如:{"Message":"OK","RequestId":"9922A379-7373-492C-842A- ...
- CSS案例1(导航栏)
文本的装饰 text-decoration 通常我们用于给链接修改装饰效果 使用技巧:在一行内的盒子内,我们设定行高等于盒子的高度,就可以使文字垂直居中. <head> <meta ...
- Java高新技术第二篇:反射技术
今天我们来看一下Java中的反射技术: 首先来了解一下Java中的反射的一些概念: Java中的反射是1.2引入的 反射的基石:class类 Class类的各个实例对象分别对应各个类在内存中的字节码, ...
- Linux命令(1):date
查看时间: date "+%Y-%m-%d %H:%M:%S" 参数说明: %n : 下一行 %t : 跳格 %H : 小时(00..23) %I : 小时(01..12) %k ...
- 编译器报错: error LNK2001: unresolved external symbol "struct _ServiceDescriptorTable * KeServiceDescript
转自VC错误:http://www.vcerror.com/?p=10 问题描述: 编译器报错: error LNK2001: unresolved external symbol "str ...
- Java-Class-C:java.util.ArrayList
ylbtech-Java-Class-C:java.util.ArrayList 1.返回顶部 1.1. import java.util.ArrayList;import java.util.Lis ...
- [转]WinForm DataGridView 绑定泛型List(List<T>)/ArrayList不显示的原因和解决
背景:无意间遇到了一个不大不小的问题,希望对一些遇到的人有所帮助! 一.问题 WinForm DataGridView 绑定泛型List (List<T>)/ArrayList不显示,UI ...
- SPSS如何调用已建立的数据文件
SPSS如何调用已建立的数据文件 调用已建立的数据文件 SPSS可以调用SPSS(*.sav),Excel(*.xls),dBASE(*.dbf),ASCII(*.dat,*.txt)等数据文件. 2 ...
- LeetCode刷题笔记-回溯法-分割回文串
题目描述: 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. 示例: 输入: "aab"输出:[ ["aa", ...
- 拾遗:不用使 sizeof 获取数组大小
... #include <stdio.h> #include <unistd.h> int main(void) { ] = {}; size_t num = () - (i ...