TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 12015   Accepted: 5792

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.



For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.

Output

The
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

开始正经的学计算几何,恩,是的没错~

加油~

题意:给定一个长方形,在里面加上不相交的线,然后给若干点,求这些点落在哪个区域。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#define N 500015
#define INF 1000000
#define ll long long
using namespace std;
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
}; int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
const int MAXN = ;
Line line[MAXN];
int ans[MAXN];
int main(void)
{
int n,m,x1,y1,x2,y2,i;
int ui,li;
int cnt = ;
while(scanf("%d",&n),n)
{
if(cnt == ) cnt = ;
else printf("\n");
scanf("%d %d %d %d %d",&m,&x1,&y1,&x2,&y2);
for(i = ; i < n; i++)
{
scanf("%d%d",&ui,&li);
line[i] = Line(Point(ui,y1),Point(li,y2));
}
line[n] = Line(Point(x2,y1),Point(x2,y2)); int x,y;
Point p;
memset(ans,,sizeof(ans)); while(m--)
{
scanf("%d %d",&x,&y);
p = Point(x,y);
int l = ,r = n,tmp = ;
while(l <= r)
{
int mid = (l + r)/;
if(xmult(p,line[mid].s,line[mid].e) < )
{
tmp = mid;
r = mid - ;
}
else
l = mid + ;
}
ans[tmp]++;
}
for(i = ; i <= n; i++)
printf("%d: %d\n",i,ans[i]);
}
return ;
}

poj 2318 TOYS(计算几何 点与线段的关系)的更多相关文章

  1. POJ 2318 TOYS(计算几何)

    跨产品的利用率推断点线段向左或向右,然后你可以2分钟 代码: #include <cstdio> #include <cstring> #include <algorit ...

  2. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. 【POJ】2318 TOYS ——计算几何+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10281   Accepted: 4924 Description ...

  5. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  6. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  7. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

随机推荐

  1. tensorflow识别验证码(1)-tensorflow安装,验证码生成

    什么是TensorFlow?  TensorFlow是Google开发的一款神经网络的Python外部的结构包, 也是一个采用数据流图来进行数值计算的开源软件库.TensorFlow 让我们可以先绘制 ...

  2. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  3. LoadRunner如何调用外部函数

    LoadRunner如何调用外部函数 使用 VuGen 时,可以调用在外部 DLL 中定义的函数.通过从脚本调用外部函数,可以降低脚本的内存使用量以及总体运行时间.要调用外部函数,需要加载定义了该函数 ...

  4. ODOO/OPENERP的网页模块QWEB简述

    1.web 模块 注意,OpenERP 模块中 web 部分用到的所有文件必须被放置在模块内的 static 文件夹里.这是强制性的,出于安全考虑. 事实上,我们创建的文件夹 CSS,JS 和 XML ...

  5. 并发和多线程(四)--wait、notify、notifyAll、sleep、join、yield使用详解

    wait.notify.notifyAll 这三个方法都是属于Object的,Java中的类默认继承Object,所以在任何方法中都可以直接调用wait(),notifyAll(),notify(), ...

  6. Django之深入了解视图层

    目录 视图层三板斧 HttpResponse render redirect JsonResponse FBV CBV CBV源码 如何给FBV和CBV加装饰器 视图层三板斧 规定视图函数必须有一个返 ...

  7. vue-router动态路由控制

    一.注册使用vue-router import Vue from 'vue' import Router from 'vue-router' Vue.use(Router); 二.编写动态路由注册函数 ...

  8. System.Web.Mvc.RedirectToRouteResult.cs

    ylbtech-System.Web.Mvc.RedirectToRouteResult.cs 1.程序集 System.Web.Mvc, Version=5.2.3.0, Culture=neutr ...

  9. 模板——网络流Dinic

    感谢这位大佬的博客:https://www.cnblogs.com/SYCstudio/p/7260613.html 给予了我莫大的帮助! 主要说一下网络流的几个注意点: 1.和二分图匹配相似,无法继 ...

  10. sql里面插入语句insert后面的values关键字可省略

    插入到表名(列值)后跟一个查询语句的话就代表值,简单的说就是后面select select出来的值就是要插入的值,即  insert into tb(字段名一,字段名二)select 字段名一,字段名 ...