传送门

解题思路

  数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^nk\%i=n*k-\sum\limits_{i=1}^ni*\left\lfloor\dfrac{k}{i}\right\rfloor\),这样的话因为\(\left\lfloor\dfrac{k}{i}\right\rfloor\)的取值只有\(O(\sqrt n)\)级别,所以可以每次找到相等值的左端点和右端点,用一次等差数列求和公式即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std;
typedef long long LL; int n,k;
LL ans; int main(){
scanf("%d%d",&n,&k);ans=(LL)n*k;
for(int l=1,r;l<=n;l=r+1){
if((k/l)!=0) r=min(k/(k/l),n);
else r=n;
ans-=(LL)(k/l)*(r-l+1)*(l+r)/2;
}
cout<<ans;
return 0;
}

LUOGU P2261 [CQOI2007]余数求和(数论分块)的更多相关文章

  1. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  2. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  3. P2261 [CQOI2007]余数求和[整除分块]

    题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...

  4. Luogu P2261 [CQOI2007]余数求和

    最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...

  5. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  6. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  7. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  8. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  9. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

随机推荐

  1. H5新增input表单、表单属性

    新增表单 email,Email类型 url , Url类型 date,日期类型 time,时间类型 month,月类型 week,周类型 number,数字类型 tel,电话类型 search,搜索 ...

  2. BBS论坛 后台管理

    七.后台管理 后台管理页面: <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  3. Linux 父进程发送信号杀死子进程

    #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <signal. ...

  4. Tomcat服务器优化(内存,并发连接数,缓存)

    a) 内存优化:主要是对Tomcat启动参数进行优化,我们可以在Tomcat启动脚本中修改它的最大内存数等等.b) 线程数优化:Tomcat的并发连接参数,主要在Tomcat配置文件中server.x ...

  5. 了解linux web的监听工具

    zabbix cacti Nagios 本想安装的,但是安装需要一个 空的服务器,因为服务器已经有安装 LAMP,故没有去了解 尝试了 cacti ,因为本地环境版本问题,只能使用0.8.8a版本,并 ...

  6. php上传(二)

    上传的主体页面 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www ...

  7. GDI+用PNG图片做半透明异型窗口

    http://hi.baidu.com/bluew/blog/item/2ecbe58bf93a937d9f2fb4de.html2007-08-09 00:52 我是用PNG图片Alpha透明的方式 ...

  8. java基础编程题(2)

    1.给定一个二叉树,找出其最大深度. 注:二叉树的深度为根节点到最远叶子节点的最长路径上的节点数. /** * Definition for a binary tree node. * public ...

  9. 把swf反编译成fla的几种方法

    2007年著 第一种方法: 利用IMPERATOR FLA1.63 ,这个软件有演示版 和正式版 , 演示版不能反编译Action Scropt,在利用正式版反编译的过程中有时会丢失Action Sc ...

  10. XDTIC2019招新笔试题 + 官方解答

    腾讯创新俱乐部2019年招新笔试试题   [1] 小宗学长正在努力学习数论,他写下了一个奇怪的算式: \[ 2019^{2018^{2017^{\dots^{2^1}}}} \] 算式的结果一定很大, ...