2019.10.29 csp-s模拟测试93 反思总结
T1:
求出前缀和,三维偏序O(nlog2n)CDQ
二维其实就可以
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+,inf=;
int n,ans,tot,tree[*N];
long long a[N],b[N];
long long suma[N],sumb[N],c[*N];
struct node{
int ha,hb,id;
}s[N],d[N];
void add(int x,int k){
for(;x<=tot;x+=(x&-x))tree[x]=min(tree[x],k);
}
void clear(int x){
for(;x<=tot;x+=(x&-x))tree[x]=inf;
}
int ask(int x){
int num=inf;
for(;x;x-=(x&-x))num=min(tree[x],num);
return num;
}
void work(int l,int r){
if(l==r){
return;
}
int mid=(l+r)/;
work(l,mid),work(mid+,r);
int ll=l,rr=mid+,p=l;
while(ll<=mid&&rr<=r){
if(s[ll].ha<=s[rr].ha){
add(s[ll].hb,s[ll].id);
d[p++]=s[ll++];
}
else{
int x=ask(s[rr].hb);
if(x!=inf)ans=max(ans,s[rr].id-x);
d[p++]=s[rr++];
}
}
while(rr<=r){
int x=ask(s[rr].hb);
if(x!=inf)ans=max(ans,s[rr].id-x);
d[p++]=s[rr++];
}
for(int i=l;i<=ll;i++){
clear(s[i].hb);
}
while(ll<=mid)d[p++]=s[ll++];
for(int i=l;i<=r;i++)s[i]=d[i];
}
int main(){
// freopen("sequence.in","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
for(int i=;i<=n;i++){
scanf("%lld",&b[i]);
}
for(int i=;i<=n;i++){
if(i)suma[i]=suma[i-]+a[i];
if(i)sumb[i]=sumb[i-]+b[i];
c[++tot]=suma[i],c[++tot]=sumb[i];
}
sort(c+,c+tot+);
tot=unique(c+,c+tot+)-c-;
for(int i=;i<=tot;i++)tree[i]=inf;
for(int i=;i<=n;i++){
s[i].ha=lower_bound(c+,c+tot+,suma[i])-c;
s[i].hb=lower_bound(c+,c+tot+,sumb[i])-c;
s[i].id=i;
}
work(,n);
printf("%d\n",ans);
return ;
}
一开始没有处理0的位置,出题人慷慨地送了我90pts
T2:
区间DP+四边形不等式优化
DP合并方式是枚举决策点,左右可以看作独立的树,然后再整体加一层的贡献
发现决策点单调,于是f[i][j]只从p[i][j-1]->p[i+1][j]枚举决策点。p为决策点数组。
跳过四边形不等式证明:如果觉得决策点单调就把决策点矩阵打印出来,发现行列上均单调,则有可能可以四边形不等式优化。
O(n2)
#include<iostream>
#include<cstdio>
using namespace std;
const long long inf=1e18;
int n,a[],p[][];
long long f[][],sum[];
int main()
{
// freopen("tree.in","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
f[i][j]=inf;
}
}
for(int i=;i<=n;i++)f[i][i]=a[i],p[i][i]=i;
for(int i=;i<=n;i++){
for(int j=;j+i-<=n;j++){
for(int k=p[j][j+i-];k<=p[j+][j+i-];k++){
if(f[j][k-]+f[k+][j+i-]+sum[j+i-]-sum[j-]<f[j][j+i-]){
f[j][j+i-]=f[j][k-]+f[k+][j+i-]+sum[j+i-]-sum[j-];
p[j][j+i-]=k;
}
}
}
}
printf("%lld\n",f[][n]);
return ;
}
T3:
设从k点开始转移,以1的最终值为答案。
列出转移方程:f[i]=∑f[j]/x+1,x为i的出度。移项,列出高斯消元数组。
对于一个点,当它作为k时,它的f值为0。又发现对于不同的k,每次其它点的消元式子并不会发生变化。
线段树分治,每次存下当前的数组,只消元一半,然后递归进下一层。当处理到只有一个点的区间时,这个点的答案即为消元数组中1号点对应的答案。
一开始避免了消元时的选行,以及消元的时候出现0似乎没有什么影响:
#include<iostream>
#include<cstdio>
using namespace std;
const int mod=;
int n,m;
int ver[],Next[],head[],tot,chu[];
long long val[][],ans[],d[][][];
void add(int x,int y){
ver[++tot]=y;
Next[tot]=head[x];
head[x]=tot;
}
long long ks(long long x,int k){
long long num=;
while(k){
if(k&)num=num*x%mod;
x=x*x%mod;
k>>=;
}
return num;
}
void make(int l,int r){
// int pos;
for(int i=l;i<=r;i++){
// pos=i;
// for(int j=i;j<=n;j++){
// if(val[j][i]>val[pos][i])pos=j;
// }
// for(int j=1;j<=n+1;j++){
// swap(val[i][j],val[pos][j]);
// }
int tmp=val[i][i];
if(!tmp)continue;
long long inv=ks(tmp,mod-);
for(int j=;j<=n+;j++){
val[i][j]=val[i][j]*inv%mod;
}
for(int j=;j<=n;j++){
if(j!=i){
int s=val[j][i];
for(int k=;k<=n+;k++){
val[j][k]=(val[j][k]-s*val[i][k]%mod+mod)%mod;
}
}
}
}
}
void work(int l,int r,int dep){
if(l==r){
ans[l]=val[][n+];
return;
}
// long long d[310][310];
for(int i=;i<=n;i++){
for(int j=;j<=n+;j++){
d[dep][i][j]=val[i][j];
}
}
int mid=(l+r)/;
make(l,mid);
work(mid+,r,dep+);
for(int i=;i<=n;i++){
for(int j=;j<=n+;j++){
val[i][j]=d[dep][i][j];
}
}
make(mid+,r);
work(l,mid,dep+);
}
int main()
{
// freopen("walk.in","r",stdin);
// freopen("1.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
add(x,y);
chu[x]++;
}
for(int i=;i<=n;i++){
val[i][i]=-chu[i];
// long long inv=ks(chu[i],mod-2);
for(int j=head[i];j;j=Next[j]){
int y=ver[j];
val[i][y]++;
}
val[i][n+]=-chu[i];
}
work(,n,);
for(int i=;i<=n;i++){
printf("%lld\n",ans[i]);
}
return ;
}
这样选行会错的原因是,对于一个k来说,整个消元过程中它是不能被选择到的。在它作为k的意义下,它的数组其实相当于不存在。
及时跳出选行即可:
#include<iostream>
#include<cstdio>
using namespace std;
const int mod=;
int n,m;
int ver[],Next[],head[],tot,chu[];
long long val[][],ans[],d[][][];
void add(int x,int y){
ver[++tot]=y;
Next[tot]=head[x];
head[x]=tot;
}
long long ks(long long x,int k){
long long num=;
while(k){
if(k&)num=num*x%mod;
x=x*x%mod;
k>>=;
}
return num;
}
void make(int l,int r){
int pos;
for(int i=l;i<=r;i++){
pos=i;
for(int j=i;j<=n;j++){
if(val[j][i]){pos=j;break;}
}
for(int j=;j<=n+;j++){
swap(val[i][j],val[pos][j]);
}
for(int j=;j<=n+;j++)val[i][j]=(val[i][j]+mod)%mod;
int tmp=val[i][i];
if(!tmp)continue;
long long inv=ks(tmp,mod-);
for(int j=;j<=n+;j++){
val[i][j]=val[i][j]*inv%mod;
}
for(int j=;j<=n;j++){
if(j!=i){
int s=val[j][i];
for(int k=;k<=n+;k++){
val[j][k]=(val[j][k]-s*val[i][k]%mod+mod)%mod;
}
}
}
}
}
void work(int l,int r,int dep){
if(l==r){
ans[l]=val[][n+];
return;
}
// long long d[310][310];
for(int i=;i<=n;i++){
for(int j=;j<=n+;j++){
d[dep][i][j]=val[i][j];
}
}
int mid=(l+r)/;
make(l,mid);
work(mid+,r,dep+);
for(int i=;i<=n;i++){
for(int j=;j<=n+;j++){
val[i][j]=d[dep][i][j];
}
}
make(mid+,r);
work(l,mid,dep+);
}
int main()
{
// freopen("walk.in","r",stdin);
// freopen("1.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
add(x,y);
chu[x]++;
}
for(int i=;i<=n;i++){
val[i][i]=-chu[i];
// long long inv=ks(chu[i],mod-2);
for(int j=head[i];j;j=Next[j]){
int y=ver[j];
val[i][y]++;
}
val[i][n+]=-chu[i];
}
work(,n,);
for(int i=;i<=n;i++){
printf("%lld\n",ans[i]);
}
return ;
}
↑上面的复杂度都是O(n3logn)每个点会被消log次,消一次是n2
//????????????????
//????????????
//exm??????
//??????????????? ?????????
#include<iostream>
#include<cstdio>
using namespace std;
const int mod=;
int n,m;
int ver[],Next[],head[],tot,chu[];
long long val[][],ans[],d[][][];
void add(int x,int y){
ver[++tot]=y;
Next[tot]=head[x];
head[x]=tot;
}
long long ks(long long x,int k){
long long num=;
while(k){
if(k&)num=num*x%mod;
x=x*x%mod;
k>>=;
}
return num;
}
void make(int l,int r,int L,int R){
for(int i=l;i<=r;i++){
// for(int j=1;j<=n+1;j++)val[i][j]=(val[i][j]+mod)%mod;
int tmp=val[i][i];
if(!tmp)continue;
long long inv=ks(tmp,mod-);
for(int j=L;j<=R;j++){
val[i][j]=val[i][j]*inv%mod;
}
val[i][n+]=val[i][n+]*inv%mod;
for(int j=;j<=n;j++){
if(j!=i){
int s=val[j][i];
if(!s)continue;
for(int k=L;k<=R;k++){
val[j][k]=(val[j][k]-s*val[i][k]%mod+mod)%mod;
}
val[j][n+]=(val[j][n+]-s*val[i][n+]%mod+mod)%mod;
}
}
}
}
void work(int l,int r,int dep){
if(l==r){
ans[l]=val[][n+];
return;
}
// long long d[310][310];
for(int i=;i<=n;i++){
for(int j=l;j<=r;j++){
d[dep][i][j]=val[i][j];
}
d[dep][i][n+]=val[i][n+];
}
int mid=(l+r)/;
make(l,mid,l,r);
work(mid+,r,dep+);
for(int i=;i<=n;i++){
for(int j=l;j<=r;j++){
val[i][j]=d[dep][i][j];
}
val[i][n+]=d[dep][i][n+];
}
make(mid+,r,l,r);
work(l,mid,dep+);
for(int i=;i<=n;i++){
for(int j=l;j<=r;j++){
val[i][j]=d[dep][i][j];
}
val[i][n+]=d[dep][i][n+];
}
}
int main()
{
// freopen("walk.in","r",stdin);
// freopen("1.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
add(x,y);
chu[x]++;
}
for(int i=;i<=n;i++){
val[i][i]=-chu[i];
// long long inv=ks(chu[i],mod-2);
for(int j=head[i];j;j=Next[j]){
int y=ver[j];
val[i][y]++;
}
val[i][n+]=-chu[i];
}
work(,n,);
for(int i=;i<=n;i++){
printf("%lld\n",ans[i]);
}
return ;
}
抄思路&&%%%巨神
↑这个是O(n3)
为什么????陷入迷惑
2019.10.29 csp-s模拟测试93 反思总结的更多相关文章
- 2019.10.29 CSP%您赛第四场t2
我太菜了我竟然不会分层图最短路 ____________________________________________________________________________________ ...
- 2019.8.3 [HZOI]NOIP模拟测试12 C. 分组
2019.8.3 [HZOI]NOIP模拟测试12 C. 分组 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 刚看这题觉得很难,于是数据点分治 k只有1和2两种,分别 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色
2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 数据结构学傻的做法: 对每种颜色开动态开点线段树直接维 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci)
2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需 ...
- csp-s模拟测试93
csp-s模拟测试93 自闭场. $T1$想到$CDQ$,因为复杂度少看见一个$0$打了半年还用了$sort$直接废掉,$T2$,$T3$直接自闭暴力分都没有.考场太慌了,心态不好. 02:07:34 ...
- 2019.8.14 NOIP模拟测试21 反思总结
模拟测试20的还没改完先咕着 各种细节问题=错失190pts T1大约三分钟搞出了式子,迅速码完,T2写了一半的时候怕最后被卡评测滚去交了,然后右端点没有初始化为n…但是这样还有80pts,而我后来还 ...
- 2019.8.9 NOIP模拟测试15 反思总结
日常爆炸,考得一次比一次差XD 可能还是被身体拖慢了学习的进度吧,虽然按理来说没有影响.大家听的我也听过,大家学的我也没有缺勤多少次. 那么果然还是能力问题吗……? 虽然不愿意承认,但显然就是这样.对 ...
- 2019.8.1 NOIP模拟测试11 反思总结
延迟了一天来补一个反思总结 急匆匆赶回来考试,我们这边大家的状态都稍微有一点差,不过最后的成绩总体来看好像还不错XD 其实这次拿分的大都是暴力[?],除了某些专注于某道题的人以及远程爆踩我们的某学车神 ...
- 2019.10.29 csp-s模拟测试92 反思总结
今天快乐的墨雨笙因为什么而几乎爆零了呢? 顾此失彼+不会对拍+无脑的复杂度 今天高兴的墨雨笙又因为什么调了一个下午呢? 不明题意+不想范围+板子低级错误 R.I.P. T1: //唉 //害怕TLE, ...
随机推荐
- JavaScript编码指南
出其不意 1920年,William Strunk Jr的<英文写作指南>出版了,这本书给英语的风格定下了一个规范,而且已经沿用至今.代码其实也可以使用相似的方法加以改进. 本文接下来的部 ...
- JDK1.8中文CHM下载 -- java开发搬运工
网上一番查找后,发现csdn有,但是要收费,之后从某地找到热心网友的分享,现贡献给大家! 不啰嗦,直接上货! 链接:https://pan.baidu.com/s/1b6Wg7LiUZsFSYGsvR ...
- Largest Rectangle in a Histogram /// 单调栈 oj23906
题目大意: 输入n,,1 ≤ n ≤ 100000,接下来n个数为每列的高度h ,0 ≤ hi ≤ 1000000000 求得最大矩阵的面积 Sample Input 7 2 1 4 5 1 3 34 ...
- CDH断电后 hbase出现spilt块不完整问题
从错误看起来是regionspilt时候断电了,导致hbase master启动不起来,因为是测试环境只能删除这些region了,掉一部分数据 删除hbase下spilt块,删除zK里面的habse ...
- 浅谈web应用的高可用
1.熟悉几个组件 1.1.apache —— 它是Apache软件基金会的一个开放源代码的跨平台的网页服务器,属于老牌的web服务器了,支持基于Ip或者域名的虚拟主机,支持代理服务器,支持安全 ...
- 【daydayup】weTalk
先看一下项目效果 这个是我运行的作者的项目的wetalk-server项目,他还有wetalk-client 项目 先放下作者的github项目地址:https://github.com/mangyu ...
- 阶梯nim游戏
阶梯nim游戏有n个阶梯,0-n-1,每个阶梯上有一堆石子,编号为i的阶梯上的石子只能移动到i-1上去,每次至少移动一个,最后所有的石子都移动到0号阶梯上了.结论:奇数阶梯上的石子异或起来,要是0,就 ...
- jQuery实现contains方法不区分大小写的方法教程
jQuery.expr[':'].Contains = function(a, i, m){ return jQuery(a).text().toUpperCase() .indexOf(m[3].t ...
- Python 变量与数据类型
1.变量命名规则: 变量名只能是字母,数字和下划线的任意组合 变量名第一个字符不能是数字 变量名区分大小写,大小写字母被认为是两个不同的字符 特殊关键字不能命名为变量名 2.数值的运算 print ( ...
- synchronized ReentrantLock 比较分析
在编写多线程代码的时候,对于不允许并发的代码,很多需要加锁进行处理.在进行加锁处理时候,synchronized作为java的内置锁,同时也是java关键字,最为被人熟知,即使是最初级的java程序员 ...