【Python可视化】超详细Pyecharts 1.x教程,让你的图表动起来~
前言
pyecharts 是一个用于生成 Echarts 图表的Python库。Echarts是百度开源的一个数据可视化 JS 库,可以生成一些非常酷炫的图表。
Pyecharts在1.x版本之后迎来重大更新,与老版本(0.5X)已是两个完全不同的版本,所以很多小伙伴在使用Pyecharts出现了类似'pyecharts' has no attribute 'xxx'
的报错,那是因为你安装了1.x的版本却使用了0.5x的调用方法。
- 当然如果你更习惯使用0.5X版本的可以通过如下语句来进行安装:
pip install pyecharts==0.5.11
- 安装1.x版本(仅支持Python 3.6+):
pip install pyecharts
本文将会介绍Pyecharts1.x版本的使用方法,本文所有语句均基于v1.6.2
,通过以下语句查询使用pyecharts版本:
import pyecharts
print(pyecharts.__version__)
基本使用
链式调用
pyecharts在v1.x之后支持链式调用,具体语句如下:
from pyecharts.charts import Bar
from pyecharts import options as opts
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]
# 1.x版本支持链式调用
bar = (Bar()
.add_xaxis(cate)
.add_yaxis('电商渠道', data1)
.add_yaxis('门店', data2)
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
)
# 在jupyter notebook总渲染
bar.render_notebook()
单独调用
不习惯链式调用的开发者依旧可以单独调用方法。
# 单独调用
bar = Bar()
bar.add_xaxis(cate)
bar.add_yaxis('电商渠道', data1)
bar.add_yaxis('门店', data2)
bar.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
bar.render_notebook()
全局配置
可以通过全局配置(.set_global_opts()
:)控制以下区域
使用示例如下:
"""
全局配置项使用示例:
1. 标题 & 副标题
2. 关闭图例
3. 显示工具箱
"""
bar = (Bar()
.add_xaxis(cate)
.add_yaxis('电商渠道', data1)
.add_yaxis('门店', data2)
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"),
toolbox_opts=opts.ToolboxOpts(),
legend_opts=opts.LegendOpts(is_show=False))
)
bar.render_notebook()
系列配置
可以通过系列配置(.set_series_opts()
)控制图表中的文本,线样式,标记等,使用示例如下:
"""
系列配置项使用示例:
1. 不显示数值
2. 标记每个系列的最大值
"""
bar = (Bar()
.add_xaxis(cate)
.add_yaxis('电商渠道', data1)
.add_yaxis('门店', data2)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),]))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
)
bar.render_notebook()
基本图表
饼图
from pyecharts.charts import Pie
from pyecharts import options as opts
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data = [153, 124, 107, 99, 89, 46]
pie = (Pie()
.add('', [list(z) for z in zip(cate, data)],
radius=["30%", "75%"],
rosetype="radius")
.set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
)
pie.render_notebook()
折线图
from pyecharts.charts import Line
from pyecharts import options as opts
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]
"""
折线图示例:
1. is_smooth 折线 OR 平滑
2. markline_opts 标记线 OR 标记点
"""
line = (Line()
.add_xaxis(cate)
.add_yaxis('电商渠道', data1,
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
.add_yaxis('门店', data2,
is_smooth=True,
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点",
coord=[cate[2], data2[2]], value=data2[2])]))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题"))
)
line.render_notebook()
漏斗图
from pyecharts.charts import Funnel
from pyecharts import options as opts
# 示例数据
cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功']
data = [30398, 15230, 10045, 8109, 5698]
"""
漏斗图示例:
1. sort_控制排序,默认降序;
2. 标签显示位置
"""
funnel = (Funnel()
.add("用户数", [list(z) for z in zip(cate, data)],
sort_='ascending',
label_opts=opts.LabelOpts(position="inside"))
.set_global_opts(title_opts=opts.TitleOpts(title="Funnel-基本示例", subtitle="我是副标题"))
)
funnel.render_notebook()
热力图
from pyecharts.charts import HeatMap
from pyecharts import options as opts
from pyecharts.faker import Faker
import random
# 示例数据
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
heat = (HeatMap()
.add_xaxis(Faker.clock)
.add_yaxis("访客数",
Faker.week,
data,
label_opts=opts.LabelOpts(is_show=True, position="inside"))
.set_global_opts(
title_opts=opts.TitleOpts(title="HeatMap-基本示例", subtitle="我是副标题"),
visualmap_opts=opts.VisualMapOpts(),
legend_opts=opts.LegendOpts(is_show=False))
)
heat.render_notebook()
日历图
from pyecharts.charts import Calendar
from pyecharts import options as opts
import random
import datetime
# 示例数据
begin = datetime.date(2019, 1, 1)
end = datetime.date(2019, 12, 31)
data = [[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
for i in range((end - begin).days + 1)]
"""
日历图示例:
"""
calendar = (
Calendar()
.add("微信步数", data, calendar_opts=opts.CalendarOpts(range_="2019"))
.set_global_opts(
title_opts=opts.TitleOpts(title="Calendar-基本示例", subtitle="我是副标题"),
legend_opts=opts.LegendOpts(is_show=False),
visualmap_opts=opts.VisualMapOpts(
max_=25000,
min_=1000,
orient="horizontal",
is_piecewise=True,
pos_top="230px",
pos_left="100px",
)
)
)
calendar.render_notebook()
地理系图表
from pyecharts import options as opts
from pyecharts.charts import Map
import random
province = ['广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏']
data = [(i, random.randint(50, 150)) for i in province]
_map = (
Map()
.add("销售额", data, "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="Map-基本示例"),
legend_opts=opts.LegendOpts(is_show=False),
visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True),
)
)
_map.render_notebook()
地理热点图
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
import random
province = ['武汉', '十堰', '鄂州', '宜昌', '荆州', '孝感', '黄石', '咸宁', '仙桃']
data = [(i, random.randint(50, 150)) for i in province]
geo = (Geo()
.add_schema(maptype="湖北")
.add("门店数", data,
type_=ChartType.HEATMAP)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(),
legend_opts=opts.LegendOpts(is_show=False),
title_opts=opts.TitleOpts(title="Geo-湖北热力地图"))
)
geo.render_notebook()
3D散点图
from pyecharts import options as opts
from pyecharts.charts import Scatter3D
from pyecharts.faker import Faker
import random
data = [[random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)]
for _ in range(1000)]
scatter3D = (Scatter3D()
.add("", data)
.set_global_opts(
title_opts=opts.TitleOpts("Scatter3D-基本示例"),
visualmap_opts=opts.VisualMapOpts(range_color=Faker.visual_color))
)
scatter3D.render_notebook()
其他特性
xy轴翻转
from pyecharts.charts import Bar
from pyecharts import options as opts
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]
bar = (Bar()
.add_xaxis(cate)
.add_yaxis('电商渠道', data1)
.add_yaxis('门店', data2)
.set_global_opts(title_opts=opts.TitleOpts(title="XY轴翻转-基本示例", subtitle="我是副标题"))
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.reversal_axis()
)
bar.render_notebook()
组合图表
from pyecharts import options as opts
from pyecharts.charts import Map, Bar, Grid
from pyecharts.globals import ChartType, ThemeType
import random
province = ['武汉', '十堰', '鄂州', '宜昌', '荆州', '孝感', '黄石', '咸宁', '仙桃']
data = [324, 125, 145, 216, 241, 244, 156, 278, 169]
bar = (Bar()
.add_xaxis(province)
.add_yaxis('营业额', data)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="Grid-Bar")
)
)
line = (Line()
.add_xaxis(province)
.add_yaxis('营业额', data,
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
.set_global_opts(title_opts=opts.TitleOpts(title="Grid-Line", pos_top="48%"))
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
.add(line, grid_opts=opts.GridOpts(pos_top="60%"))
)
grid.render_notebook()
主题设置
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]
"""
主题设置:
默认white
"""
bar = (Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC))
.add_xaxis(cate)
.add_yaxis('电商渠道', data1)
.add_yaxis('门店', data2)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),]))
.set_global_opts(title_opts=opts.TitleOpts(title="Theme-ROMANTIC"))
)
bar.render_notebook()
时间轴
from pyecharts import options as opts
from pyecharts.charts import Bar, Timeline
from pyecharts.globals import ThemeType
import random
# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
tl = Timeline()
for i in range(2015, 2020):
bar = (
Bar()
.add_xaxis(cate)
.add_yaxis("线上", [random.randint(50, 150) for _ in cate])
.add_yaxis("门店", [random.randint(100, 200) for _ in cate])
.set_global_opts(title_opts=opts.TitleOpts("手机品牌{}年营业额".format(i)))
)
tl.add(bar, "{}年".format(i))
tl.render_notebook()
航线图
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType, ThemeType
import requests
r = requests.get('https://echarts.baidu.com/examples/data-gl/asset/data/flights.json')
data = r.json()
city = ['Beijing']
airports_code = []
geo = Geo(init_opts=opts.InitOpts(theme=ThemeType.DARK))
for i, airport in enumerate(data['airports']):
if airport[1] in city:
geo.add_coordinate(i, airport[3], airport[4])
airports_code.append(i)
route = [(x, y) for _, x, y in data['routes'] if x in airports_code]
geo.add_schema(maptype="world",
itemstyle_opts=opts.ItemStyleOpts())
geo.add("geo", route,
is_large = True,
symbol_size=0,
type_='lines',
is_polyline=True,
effect_opts=opts.EffectOpts(symbol='pin', symbol_size=1, trail_length=1, color="rgba(255,69,0,0.9)"),
linestyle_opts=opts.LineStyleOpts(curve=0.2, width=0.2, color='rgb(245,245,245)',opacity=0.05)
)
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.set_global_opts(title_opts=opts.TitleOpts(title="北京发出所有航线"),
legend_opts=opts.LegendOpts(is_show=False))
geo.render_notebook()
整理不易,欢迎点赞收藏✨✨✨
【Python可视化】超详细Pyecharts 1.x教程,让你的图表动起来~的更多相关文章
- 超详细!Vue-Router手把手教程
目录 1,router-view 2,router-link 3,重定向redirect 4,路由别名 5,路由传参props 5.1,布尔模式 5.2,对象模式 5.3,函数模式 6,路由守卫 6. ...
- 超强、超详细Redis数据库入门教程
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么2.redis的作者何许人也3.谁在使用red ...
- 超强、超详细Redis数据库入门教程(转载)
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么 2.redis的作者何许人也 3.谁在使 ...
- 【Python可视化】使用Pyecharts进行奥运会可视化分析~
项目全部代码 & 数据集都可以访问我的KLab --[Pyecharts]奥运会数据集可视化分析-获取,点击Fork即可- 受疫情影响,2020东京奥运会将延期至2021年举行: 虽然延期,但 ...
- 超详细Redis数据库入门教程
[本教程目录] 1.redis是什么2.redis的作者何许人也3.谁在使用redis4.学会安装redis5.学会启动redis6.使用redis客户端7.redis数据结构 – 简介8.redis ...
- 超详细的Maven使用教程
原文: http://blog.csdn.net/u010425776/article/details/52027706 主题 Maven 什么是Maven? 如今我们构建一个项目需要用到很多第三方 ...
- 【转】Python学习---超详细字符串用法大全,好文推荐!
来自:Python编程与实战(微信号:pthon1024),作者:Jerryning 没有办法转,整个复制下来了 本文要点 字符串拼接 拆分含有多种分隔符的字符串 判读字符串a是否以字符串b开头或结尾 ...
- 超详细的java反射教程
看技术博客时,看到关于java反射的博文,写的非常好.猛击下面的地址,开始java反射之旅 中文翻译地址:http://ifeve.com/java-reflection/ 英文原版地址:http:/ ...
- 超详细 Nginx 极简教程,傻瓜一看也会!
什么是Nginx? Nginx (engine x) 是一款轻量级的Web 服务器 .反向代理服务器及电子邮件(IMAP/POP3)代理服务器. 什么是反向代理? 反向代理(Reverse Proxy ...
随机推荐
- [CentOS7]Yum 使用代理
公司服务器只允许YUM出公网 # vi /etc/yum.conf # 添加下面一行 proxy=http://10.1.1.1:55555 # proxy ip:端口 END
- make: *** No targets specified and no makefile found. Stop.错误
# make make: *** No targets specified and no makefile found. Stop. # yum install gcc gcc-c++ gcc-g77 ...
- 移动端键盘顶起遮挡输入框&offsetTop值不准问题
先上图 通常在开发中我们会遇到这样输入框被遮挡的问题,那么该怎么解决呢? 方案一(css): 首先,把置底元素设置成,在页面的底部而非屏幕的底部 .page .bottom { position ...
- MongoDB导入导出以及数据库备份111
-------------------MongoDB数据导入与导出------------------- 用命令行打开mongo安装路径如图: 执行后, 在此处输入命令,如:mongoexport ...
- Caliburn.Micro框架之Action Convertions
首先新建一个项目,名称叫Caliburn.Micro.ActionConvertions 然后删掉MainWindow.xaml 然后去app.xaml删掉StartupUri这行代码 其次,安装Ca ...
- ELK学习004:Elasticsearch常规操作
CRUD 在我们的项目中有日志是一个必不可少的东西,但是日志的检索是一个很麻烦的事情,如每天一个日志,要找到问题就得一个一个找,并不能做到检索功能,这还算好的,如果是分布式的,每个机器都得找一遍,这种 ...
- MySql优化之mycat
1. 解压mycat,不要放在有中文目录的地方 下载地址:http://dl.mycat.io/1.6-RELEASE/2 .修改mycat解压目录下的conf文件夹中server.xml文件,配置 ...
- 手动配置IP地址
更改适配器属性 -> 选择一个网络,单击右键 -> 属性 -> Internet 协议版本 4 (TCP/IPv4)-> 属性 进入如下界面,开始配置: IP地址: IP地址用 ...
- postman界面按钮
Inport:导入,直接导入postman请求集或请求文件 Runner: 执行请求,选择执行请求的collection,并且添加执行参数,例如执行时间,执行次数 History: 所有调试的历史请求 ...
- 38.Python自定义计算时间过滤器
在写自定义的过滤器时,因为django.template.Library.filter()本身可以作为一个装饰器,所以可以使用: register = django.template.Library( ...