求$C_n^m mod p$,其中p不是质数且不保证p能分解为几个不同质数的乘积(也就是不能用crt合并)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define re register
#define int long long
using namespace std;
int n,m,p;
int q_pow(int a,int b,int p){
int res=1;
while(b){
if(b&1) res=res*a%p;
a=a*a%p;
b>>=1;
}
return res;
}
inline void exgcd(re int a,re int b,re int &x,re int &y){
if(!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
re int t=x;
x=y,y=t-(a/b)*y;
}
inline int inv(re int a,re int b){
re int x,y;
exgcd(a,b,x,y);
return (x%b+b)%b;
}
inline int crt(re int x,re int p,re int mod){
return inv(p/mod,mod)*(p/mod)*x;
}
inline int fac(re int x,re int a,re int b){
if(!x) return 1;
re int ans=1;
for(re int i=1;i<=b;i++)
if(i%a) ans*=i,ans%=b;
ans=q_pow(ans,x/b,b);
for(re int i=1;i<=x%b;i++){
if(i%a) ans*=i,ans%=b;
}
return ans*fac(x/a,a,b)%b;
}
inline int C(re int n,re int m,re int a,re int b){
re int N=fac(n,a,b),M=fac(m,a,b),Z=fac(n-m,a,b),sum=0;
for(re int i=n;i;i=i/a) sum+=i/a;
for(re int i=m;i;i=i/a) sum-=i/a;
for(re int i=n-m;i;i=i/a) sum-=i/a;
return N*q_pow(a,sum,b)%b*inv(M,b)%b*inv(Z,b)%b;
}
inline int exlucas(re int n,re int m,re int p){
re int t=p,ans=0;
for(re int i=2;i*i<=p;i++){
re int k=1;
while(t%i==0)
k*=i,t/=i;
ans+=crt(C(n,m,i,k),p,k),ans%=p;
}
if(t>1) ans+=crt(C(n,m,t,t),p,t),ans%=p;
return ans%p;
}
signed main(){
scanf("%lld%lld%lld",&n,&m,&p);
printf("%lld\n",exlucas(n,m,p));
return 0;
}

质因数分解求组合数:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 1000006
#define re register
#define int long long
using namespace std;
int n,m,p;
int min(int a,int b){
return a<b?a:b;
}
int max(int a,int b){
return a>b?a:b;
}
inline int q_pow(re int a,re int b,re int p){
int res=1;
while(b){
if(b&1) res=res*a%p;
a=a*a%p;
b>>=1;
}
return res%p;
}
int prime[MAXN],pr[MAXN],tot=0;
bool vis[MAXN];
void get_prime(int N){
vis[1]=1;
for(int i=2;i<=N;i++){
if(!vis[i]) prime[++tot]=i,pr[i]=tot;
for(int j=1;j<=tot&&i*prime[j]<=N;j++){
vis[i*prime[j]]=1,pr[i*prime[j]]=j;
if(!(i%prime[j])) break;
}
}
}
int d[MAXN];
void add(int x,int val){
while(x!=1){
d[pr[x]]+=val;
x/=prime[pr[x]];
}
}
inline int C(int n,int m,int p){
int res=1;
for(int i=1;i<=m;++i)
add(n-i+1,1),add(i,-1);
for(re int j=1;j<=tot;j++){
for(re int k=1;k<=d[j];k++)
(res*=prime[j])%=p;
}
return res;
}
signed main(){
scanf("%lld%lld%lld",&n,&m,&p);
get_prime(n);
printf("%lld\n",C(n,m,p));
return 0;
}

模板:exlucas的更多相关文章

  1. NOIP模板总结

    NOIP模板总结 进考场先打一份缺省源: # include <cstdio> # include <iostream> # include <cstring> # ...

  2. 洛谷P4720 【模板】扩展卢卡斯

    P4720 [模板]扩展卢卡斯 题目背景 这是一道模板题. 题目描述 求 C(n,m)%P 其中 C 为组合数. 输入输出格式 输入格式: 一行三个整数 n,m,p ,含义由题所述. 输出格式: 一行 ...

  3. exLucas学习笔记

    exLucas学习笔记 Tags:数学 写下抛硬币和超能粒子炮改 洛谷模板代码如下 #include<iostream> #define ll long long using namesp ...

  4. 洛谷 P4720 【模板】扩展 / 卢卡斯 模板题

    扩展卢卡斯定理 : https://www.luogu.org/problemnew/show/P4720 卢卡斯定理:https://www.luogu.org/problemnew/show/P3 ...

  5. 【知识总结】扩展卢卡斯定理(exLucas)

    扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[ ...

  6. 【模板整合计划】NB数论

    [模板整合计划]NB数论 一:[质数] 1.[暴力判] 素数.コンテスト.素数 \(\text{[AT807]}\) #include<cstdio> #include<cmath& ...

  7. exlucas易错反思

    模板和题解 复习了一下 exlucas的模板,结果写挂四次(都没脸说自己以前写过 是该好好反思一下呢~ 错的原因如下: 第一次WA:求阶乘的时候忘了递归处理(n/p)! 第二次WA:求阶乘时把p当成循 ...

  8. ACM算法模板整理

    史诗级ACM模板整理 基本语法 字符串函数 istream& getline (char* s, streamsize n ); istream& getline (char* s, ...

  9. $exLucas$学习笔记

    本来不打算写了的,,,但是感$jio$理解起来还是有点儿难度的来着,,,$so$还是瞎写点儿趴$QAQ$ $exLucas$主要有三步: 1)唯一分解$mod$并预处理$p^{k}$以内的阶乘 2)计 ...

随机推荐

  1. 配置文件一applicationContext.xml

    p命名空间注入 需要引入xmlns:p="http://www.springframework.org/schema/p" p命名空间注入的特点是使用属性而不是子元素的形式配置Be ...

  2. mysql索引原理深度解析

    mysql索引原理深度解析 一.总结 一句话总结: mysql索引是b+树,因为b+树在范围查找.节点查找等方面优化 hash索引,完全平衡二叉树,b树等 1.数据库中最常见的慢查询优化方式是什么? ...

  3. python Six 模块

    Six模块用于python2和python3的兼容 import six 官网链接:https://six.readthedocs.io/

  4. Bubble Cup 12 - Finals Online Mirror, unrated, Div. 1

    Bubble Cup 12 - Finals Online Mirror, unrated, Div. 1 C. Jumping Transformers 我会状压 DP! 用 \(dp[x][y][ ...

  5. Spring 事务传播行为(12)

    事务传播行为 指定是Spring中一个事务方法调用另一个事务方法时.处理的行为 使用方式: @Transactional(propagation=Propagation.REQUIRED) 事务的使用 ...

  6. 简单的UDP服务端和客户端示例

    UDP的理论不再多说,我这里直接给出一个关于UDP的HelloWorld程序,代码明了,希望对刚入门的学生有所帮助! 当然,实际上,在这块我也刚入门! 首先写服务端代码,服务端邦定本地的IP和端口来监 ...

  7. 网页qq在线交谈

    网页中如何启用QQ交谈 1. 登录QQ, 打开网址:http://shang.qq.com/v3/widget.html 启用QQ通讯组件. 2. 选择组件样式,设置提示语,例如: 3. 刷新页面,C ...

  8. 洛谷P2325 [SCOI2005]王室联邦

    P2325 [SCOI2005]王室联邦 题目描述 "余"人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理. 他的国家有n个城市, ...

  9. Luogu P2717 寒假作业(平衡树)

    P2717 寒假作业 题意 题目背景 \(zzs\)和\(zzy\)正在被寒假作业折磨,然而他们有答案可以抄啊. 题目描述 他们共有\(n\)项寒假作业.\(zzy\)给每项寒假作业都定义了一个疲劳值 ...

  10. 【默默努力】vue-pc-app

    最近在github上面看到了一个团队的项目,真的非常赞.他们进行vue-cli的二次开发,将项目用自己的方式打包. 今天的这个开源项目地址为:https://github.com/tffe-team/ ...