[Ynoi2012]D1T1
套路的根号分治啊
我们设置一个值\(S\)
对于\(S\leq x\)的操作,我们直接暴力修改,显然这样只会修改\(\frac{n}{S}\)次,所以我们需要一个能够\(O(1)\)修改的数据结构,自然是首选分块
对于\(S>x\)的操作,我们对于每一个\(x\)维护一个块,我们维护这个块的前缀和就好了,复杂度是\(O(S)\)的
查询的时候先用分块查一下区间和,复杂度\(O(S+\frac{n}{S})\),之后对于每一个\(x<S\)的块我们单独\(O(1)\)求一下,复杂度是\(O(S)\)
理论上自然是\(S=\sqrt{n}\)的时候取到了最优的复杂度,但是我们根据一些奇怪的常数原因,可以魔改一波块大小
代码
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=2e5+5;
const int mod=1e9+7;
int n,m,sz;
int pr[500][500],sum[500];
int pre[maxn],id[maxn],l[5000];
inline int qm(int a) {return a>=mod?a-mod:a;}
struct Block {
int a[maxn],tag[5000];
inline void change(int pos,int v) {
a[pos]=qm(a[pos]+v);
tag[id[pos]]=qm(tag[id[pos]]+v);
}
inline int ask(int x) {
int now=0;
for(re int i=1;i<id[x];i++) now=qm(now+tag[i]);
for(re int i=l[id[x]];i<=x;i++) now=qm(now+a[i]);
return now;
}
}B;
inline int find(int x,int y) {return !(y%x)?y/x:y/x+1;}
inline int solve(int x,int y) {
if(!y) return 0;
return qm(1ll*(find(x,y)-1)*sum[x]%mod+pr[x][(y%x)?y%x:x]);
}
int main() {
n=read(),m=read();
for(re int i=1;i<=n;i++) pre[i]=(pre[i-1]+read())%mod;
sz=std::sqrt(n);int L=1,tot=0;sz=250;
while(L<=n) {
l[++tot]=L;
for(re int i=L;i<=min(L+sz-1,n);i++) id[i]=tot;
L+=sz;
}
int op,x,y,v;
while(m--) {
op=read(),x=read(),y=read();
if(op==2) {
int ans=(pre[y]-pre[x-1]+mod)%mod;
ans=(ans+B.ask(y)-B.ask(x-1))%mod;
for(re int i=1;i<sz;i++) ans=(ans+solve(i,y)-solve(i,x-1))%mod;
printf("%d\n",(ans+mod)%mod);
}
if(op==1) {
v=read();
if(x>=sz) {while(y<=n) B.change(y,v),y+=x;continue;}
sum[x]=(sum[x]+v)%mod;
for(re int i=y;i<=x;i++) pr[x][i]=qm(pr[x][i]+v);
}
}
return 0;
}
[Ynoi2012]D1T1的更多相关文章
- Luogu P5309 [Ynoi2012]D1T1
小清新分块题,从头到尾都十分套路,和CXR大佬一起YY了一下就出来了 首先套路地设个阈值\(S\),把修改的\(x\)分成大于\(S\)和小于等于\(S\)两部分,然后我们考虑分别求解这两部分 \(x ...
- 【洛谷5309】[Ynoi2012] D1T1(分块)
点此看题面 大致题意: 两种操作,区间求和,将形如\(ax+y\)的位置的元素值加\(z\). 分块 这种题目显然就是按照\(x\)与\(\sqrt n\)的大小关系来分块. 对于\(x>\sq ...
- 洛谷P5524:[Ynoi2012]D1T1——题解
https://www.luogu.org/problem/P5524 看着能做就当线段树复健题了. 根据高中知识我们有 $sin(a+b)=sin(a)cos(b)+cos(a)sin(b)$ $c ...
- [2018HN省队集训D1T1] Tree
[2018HN省队集训D1T1] Tree 题意 给定一棵带点权树, 要求支持下面三种操作: 1 root 将 root 设为根. 2 u v d 将以 \(\operatorname{LCA} (u ...
- 嵊州D1T1 总统先生,一路走好!
嵊州D1T1 总统先生,一路走好! 在总统先生的所有财产就是 n 杯黑咖啡,咖啡店可以用 m 个空杯子换一杯黑咖啡. 因为总统的特殊身份,心地善良而心生怜悯的咖啡店店长决定先借给总统一杯黑咖啡,只要他 ...
- 2017.10.1 国庆清北 D1T1 zhx的字符串题
题目背景 2017国庆清北D1T1 题目描述 你是能看到第一题的 friends 呢. ——hja 何大爷对字符串十分有研究,于是天天出字符串题虐杀 zhx.何大爷今天为 字符串定义了新的权值计算方法 ...
- NOIP2016 D1T1 玩具迷題(toy)
题目描述 小南有一套可爱的玩具小人, 它们各有不同的职业. 有一天, 这些玩具小人把小南的眼镜藏了起来. 小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外.如下图: 这时singer告诉 ...
- 计蒜客模拟赛D1T1 蒜头君打地鼠:矩阵旋转+二维前缀和
题目链接:https://nanti.jisuanke.com/t/16445 题意: 给你一个n*n大小的01矩阵,和一个k*k大小的锤子,锤子只能斜着砸,问只砸一次最多能砸到多少个1. 题解: 将 ...
- 集训 D1T1 clique
将点(xi,wi)看成区间(xi-wi,xi+wi),那么两个点有连边当且仅当两个区间没有公共点.删去所有包含其它区间的区间,在剩下的区间中每次贪心取一个能取的坐标最小的区间. #include< ...
随机推荐
- dubbo jar 配置文件
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- Python编程从入门到实践
Python编程从入门到实践1 起步2 变量和简单数据类型3 列表简介4 操作列表5 if语句6 字典7 用户输入和while循环8 函数9 类10 文件和异常11 测试代码12 武装飞船13 外星人 ...
- WPF命令好状态刷新机制
https://blog.csdn.net/WPwalter/article/details/90344470 this.DispatcherInvoke(() => { System.Wind ...
- Perl 数组
Perl 数组 Perl 数组一个是存储标量值的列表变量,变量可以是不同类型. 数组变量以 @ 开头.访问数组元素使用 $ + 变量名称 + [索引值] 格式来读取,实例如下: 实例 #!/usr/b ...
- 资源-Java:Java资源列表
ylbtech-资源-Java:Java资源列表 1. 开发软件返回顶部 1.Eclipse https://www.eclipse.org/ 2.IntelliJ IDEA https://www. ...
- System.Web.Mvc.Controller.cs
ylbtech-System.Web.Mvc.Controller.cs 1.程序集 System.Web.Mvc, Version=5.2.3.0, Culture=neutral, PublicK ...
- System.Configuration.ConfigurationManager.cs
ylbtech-System.Configuration.ConfigurationManager.cs 1.程序集 System.Configuration, Version=4.0.0.0, Cu ...
- Homebrew(brew)安装MySQL@5.7及配置
查找并确定自己需要安装的版本 brew search mysql ==> Formulae automysqlbackup mysql-connector-c mysql@5.5 mysql m ...
- POJ - 2778 ~ HDU - 2243 AC自动机+矩阵快速幂
这两题属于AC自动机的第二种套路通过矩阵快速幂求方案数. 题意:给m个病毒字符串,问长度为n的DNA片段有多少种没有包含病毒串的. 根据AC自动机的tire图,我们可以获得一个可达矩阵. 关于这题的t ...
- 语音识别(语音转文字)&& 语音合成(文字转语音)
[语音合成API]SpeechSynthesisUtterance是HTML5中新增的API,用于将指定文字合成为对应的语音.也包含一些配置项,指定如何去阅读(语言,音量,音调)等 // 语音播报 s ...