图解kubernetes调度器预选设计实现学习
Scheduler中在进行node选举的时候会首先进行一轮预选流程,即从当前集群中选择一批node节点,本文主要分析k8s在预选流程上一些优秀的筛选设计思想,欢迎大佬们指正
1. 基础设计
1.1 预选场景
预选顾名思义就是从当前集群中的所有的node中,选择出满足当前pod资源和亲和性等需求的node节点,如何在集群中快速选择这样的节点,是个复杂的问题
1.2 平均分布
平均分布主要是通过让一个分配索引来进行即只有当所有的node都在本轮分配周期内分配一次后,才开始从头进行分配,从而保证集群的平均分布
1.3 预选中断
预选终端即在预选的过程中如果发现node已经不能满足当前pod资源需求的时候,就进行中断预选流程,尝试下一个节点
1.4 并行筛选
在当前k8s版本中,默认会启动16个goroutine来进行并行的预选,从而提高性能,从而提高预选的性能
1.5 局部最优解
预选流程需要从当前集群中选择一台符合要求的node随着集群规模的增长,如果每次遍历所有集群node则会必然导致性能的下降,于是通过局部最优解的方式,缩小筛选节点的数量
2. 源码分析
预选的核心流程是通过findNodesThatFit来完成,其返回预选结果供优选流程使用
2.1 取样逻辑
取样是通过当前集群中的node数量和默认的最小值来决定本次预选阶段需要获取的node节点数量
// 获取所有的节点数量,并通过计算百分比,获取本次选举选择的节点数量
allNodes := int32(g.cache.NodeTree().NumNodes())
// 确定要查找node数量
numNodesToFind := g.numFeasibleNodesToFind(allNodes)
2.2 取样算法
取样算法很简单从集群中获取指定百分比的节点默认是50%,如果50%的节点数量小于minFeasibleNodesToFind则按照minFeasibleNodesToFind(最小取样节点数量)来取样,
func (g *genericScheduler) numFeasibleNodesToFind(numAllNodes int32) (numNodes int32) {
// 如果当前节点数量小于minFeasibleNodesToFind即小于100台node
// 同理百分比如果大于100就是全量取样
// 这两种情况都直接遍历整个集群中所有节点
if numAllNodes < minFeasibleNodesToFind || g.percentageOfNodesToScore >= 100 {
return numAllNodes
}
adaptivePercentage := g.percentageOfNodesToScore
if adaptivePercentage <= 0 {
adaptivePercentage = schedulerapi.DefaultPercentageOfNodesToScore - numAllNodes/125
if adaptivePercentage < minFeasibleNodesPercentageToFind {
adaptivePercentage = minFeasibleNodesPercentageToFind
}
}
// 正常取样计算:比如numAllNodes为5000,而adaptivePercentage为50%
// 则numNodes=50000*0.5/100=250
numNodes = numAllNodes * adaptivePercentage / 100
if numNodes < minFeasibleNodesToFind { // 如果小于最少取样则按照最少取样进行取样
return minFeasibleNodesToFind
}
return numNodes
}
2.3 取样元数据准备
通过filtered来进行预选结果的存储,通过filteredLen来进行原子保护协作多个取样goroutine, 并通过predicateMetaProducer和当前的snapshot来进行元数据构建
filtered = make([]*v1.Node, numNodesToFind)
errs := errors.MessageCountMap{}
var (
predicateResultLock sync.Mutex
filteredLen int32
)
ctx, cancel := context.WithCancel(context.Background())
// We can use the same metadata producer for all nodes.
meta := g.predicateMetaProducer(pod, g.nodeInfoSnapshot.NodeInfoMap)
2.4 通过channel协作并行取样
并行取样主要通过调用下面的函数来启动16个goroutine来进行并行取样,并通过ctx来协调退出
workqueue.ParallelizeUntil(ctx, 16, int(allNodes), checkNode)
通过channel来构建取样索引的管道,每个worker会负责从channel获取的指定索引取样node的填充
func ParallelizeUntil(ctx context.Context, workers, pieces int, doWorkPiece DoWorkPieceFunc) {
var stop <-chan struct{}
if ctx != nil {
stop = ctx.Done()
}
// 生成指定数量索引,worker通过索引来进行预选成功节点的存储
toProcess := make(chan int, pieces)
for i := 0; i < pieces; i++ {
toProcess <- i
}
close(toProcess)
if pieces < workers {
workers = pieces
}
wg := sync.WaitGroup{}
wg.Add(workers)
for i := 0; i < workers; i++ {
// 启动多个goroutine
go func() {
defer utilruntime.HandleCrash()
defer wg.Done()
for piece := range toProcess {
select {
case <-stop:
return
default:
//获取索引,后续会通过该索引来进行结果的存储
doWorkPiece(piece)
}
}
}()
}
// 等待退出
wg.Wait()
}
2.5 取样并行函数
checkNode := func(i int) {
// 获取一个节点
nodeName := g.cache.NodeTree().Next()
// 取样核心流程是通过podFitsOnNode来确定
fits, failedPredicates, status, err := g.podFitsOnNode(
pluginContext,
pod,
meta,
g.nodeInfoSnapshot.NodeInfoMap[nodeName],
g.predicates, // 传递预选算法
g.schedulingQueue,
g.alwaysCheckAllPredicates,
)
if err != nil {
predicateResultLock.Lock()
errs[err.Error()]++
predicateResultLock.Unlock()
return
}
if fits {
// 如果当前以及查找到的数量大于预选的数量,就退出
length := atomic.AddInt32(&filteredLen, 1)
if length > numNodesToFind {
cancel()
atomic.AddInt32(&filteredLen, -1)
} else {
filtered[length-1] = g.nodeInfoSnapshot.NodeInfoMap[nodeName].Node()
}
} else {
// 进行错误状态的保存
predicateResultLock.Lock()
if !status.IsSuccess() {
filteredNodesStatuses[nodeName] = status
}
if len(failedPredicates) != 0 {
failedPredicateMap[nodeName] = failedPredicates
}
predicateResultLock.Unlock()
}
}
2.6 面向未来的筛选
在kubernetes中经过调度器调度后的pod结果会放入到SchedulingQueue中进行暂存,这些pod未来可能会经过后续调度流程运行在提议的node上,也可能因为某些原因导致最终没有运行,而预选流程为了减少后续因为调度冲突(比如pod之间的亲和性等问题,并且当前pod不能抢占这些pod),则会在进行预选的时候,将这部分pod考虑进去
如果在这些pod存在的情况下,node可以满足当前pod的筛选条件,则可以去除被提议的pod再进行筛选(如果这些提议的pod最终没有调度到node,则当前node也需要满足各种亲和性的需求)
2.6 取样核心设计
结合上面说的面向未来的筛选,通过两轮筛选在无论那些优先级高的pod是否被调度到当前node上,都可以满足pod的调度需求,在调度的流程中只需要获取之前注册的调度算法,完成预选检测,如果发现有条件不通过则不会进行第二轮筛选,继续选择下一个节点
func (g *genericScheduler) podFitsOnNode(
pluginContext *framework.PluginContext,
pod *v1.Pod,
meta predicates.PredicateMetadata,
info *schedulernodeinfo.NodeInfo,
predicateFuncs map[string]predicates.FitPredicate,
queue internalqueue.SchedulingQueue,
alwaysCheckAllPredicates bool,
) (bool, []predicates.PredicateFailureReason, *framework.Status, error) {
var failedPredicates []predicates.PredicateFailureReason
var status *framework.Status
// podsAdded主要用于标识当前是否有提议的pod如果没有提议的pod则就不需要再进行一轮筛选了
podsAdded := false
for i := 0; i < 2; i++ {
metaToUse := meta
nodeInfoToUse := info
if i == 0 {
// 首先获取那些提议的pod进行第一轮筛选, 如果第一轮筛选出错,则不会进行第二轮筛选
podsAdded, metaToUse, nodeInfoToUse = addNominatedPods(pod, meta, info, queue)
} else if !podsAdded || len(failedPredicates) != 0 {
// 如果
break
}
for _, predicateKey := range predicates.Ordering() {
var (
fit bool
reasons []predicates.PredicateFailureReason
err error
)
//TODO (yastij) : compute average predicate restrictiveness to export it as Prometheus metric
if predicate, exist := predicateFuncs[predicateKey]; exist {
// 预选算法计算
fit, reasons, err = predicate(pod, metaToUse, nodeInfoToUse)
if err != nil {
return false, []predicates.PredicateFailureReason{}, nil, err
}
if !fit {
// eCache is available and valid, and predicates result is unfit, record the fail reasons
failedPredicates = append(failedPredicates, reasons...)
// if alwaysCheckAllPredicates is false, short circuit all predicates when one predicate fails.
if !alwaysCheckAllPredicates {
klog.V(5).Infoln("since alwaysCheckAllPredicates has not been set, the predicate " +
"evaluation is short circuited and there are chances " +
"of other predicates failing as well.")
break
}
}
}
}
status = g.framework.RunFilterPlugins(pluginContext, pod, info.Node().Name)
if !status.IsSuccess() && !status.IsUnschedulable() {
return false, failedPredicates, status, status.AsError()
}
}
return len(failedPredicates) == 0 && status.IsSuccess(), failedPredicates, status, nil
}
微信号:baxiaoshi2020
关注公告号阅读更多源码分析文章
更多文章关注 www.sreguide.com
本文由博客一文多发平台 OpenWrite 发布
图解kubernetes调度器预选设计实现学习的更多相关文章
- 图解kubernetes调度器ScheduleAlgorithm核心实现学习框架设计
ScheduleAlgorithm是一个接口负责为pod选择一个合适的node节点,本节主要解析如何实现一个可扩展.可配置的通用算法框架来实现通用调度,如何进行算法的统一注册和构建,如何进行metad ...
- 图解kubernetes调度器抢占流程与算法设计
抢占调度是分布式调度中一种常见的设计,其核心目标是当不能为高优先级的任务分配资源的时候,会通过抢占低优先级的任务来进行高优先级的调度,本文主要学习k8s的抢占调度以及里面的一些有趣的算法 1. 抢占调 ...
- 图解kubernetes调度器SchedulerExtender扩展
在kubernetes的scheduler调度器的设计中为用户预留了两种扩展机制SchdulerExtender与Framework,本文主要浅谈一下SchdulerExtender的实现, 因为还有 ...
- 图解kubernetes调度器SchedulingQueue核心源码实现
SchedulingQueue是kubernetes scheduler中负责进行等待调度pod存储的对,Scheduler通过SchedulingQueue来获取当前系统中等待调度的Pod,本文主要 ...
- 图解kubernetes调度器SchedulerCache核心源码实现
SchedulerCache是kubernetes scheduler中负责本地数据缓存的核心数据结构, 其实现了Cache接口,负责存储从apiserver获取的数据,提供给Scheduler调度器 ...
- Kubernetes 调度器实现初探
Kubernetes 调度器 Kubernetes 是一个基于容器的分布式调度器,实现了自己的调度模块.在Kubernetes集群中,调度器作为一个独立模块通过pod运行.从几个方面介绍Kuberne ...
- kubernetes 调度器
调度器 kube-scheduler 是 kubernetes 的核心组件之一,主要负责整个集群资源的调度功能,根据特定的调度算法和策略,将 Pod 调度到最优的工作节点上面去,从而更加合理.更加充分 ...
- 第十五章 Kubernetes调度器
一.简介 Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上.听起来非常简单,但有很多要考虑的问题: ① 公平:如何保证每个节点都能被分配资源 ② ...
- 巧用Prometheus来扩展kubernetes调度器
Overview 本文将深入讲解 如何扩展 Kubernetes scheduler 中各个扩展点如何使用,与扩展scheduler的原理,这些是作为扩展 scheduler 的所需的知识点.最后会完 ...
随机推荐
- 高级教程: 作出动态决策和 Bi-LSTM CRF 重点
动态 VS 静态深度学习工具集 Pytorch 是一个 动态 神经网络工具包. 另一个动态工具包的例子是 Dynet (我之所以提这个是因为使用 Pytorch 和 Dynet 是十分类似的. 如果你 ...
- Java日志框架——JCL
JCL,全称为"Jakarta Commons Logging",也可称为"Apache Commons Logging". 一.JCL原理 1.基本原理 JC ...
- P1077 旅行
题目描述 你要进行一个行程为7000KM的旅行,现在沿途有些汽车旅馆,为了安全起见,每天晚上都不开车,住在汽车旅馆,你手里现在已经有一个旅馆列表,用离起点的距离来标识,如下: 0, 990, 1010 ...
- H3C TFTP文件传输过程
- linux 存取 I/O 内存
在一些平台上, 你可能逃过作为一个指针使用 ioremap 的返回值的惩罚. 这样的使用不 是可移植的, 并且, 更加地, 内核开发者已经努力来消除任何这样的使用. 使用 I/O 内 存的正确方式是通 ...
- 使用cnpm i -S axios 遇到报错Install fail! Error: EISDIR: illegal operation on a directory, symlink..........的解决办法
“今天本来想在cnpm 环境下安装axios,但是在安装axios的时候出现了一些问题.使用cnpm淘宝镜像库下载安装axios的时候报错 Install fail! Error: EISDIR: i ...
- POJ - 3415 Common Substrings (后缀数组)
A substring of a string T is defined as: T( i, k)= TiTi +1... Ti+k -1, 1≤ i≤ i+k-1≤| T|. Given two s ...
- HDU 2102 A计划 DFS与BFS两种写法 [搜索]
1.题意:一位公主被困在迷宫里,一位勇士前去营救,迷宫为两层,规模为N*M,迷宫入口为(0,0,0),公主的位置用'P'标记:迷宫内,'.'表示空地,'*'表示墙,特殊的,'#'表示时空传输机,走到这 ...
- 关于js如果控制标签的字符长度
js名字长度限定(如限制为50个字符,超过的显示...) var new_playerName = ""; jQuery(".translate").each( ...
- switch多值匹配骚操作,带你涨姿势!
我们都知道 switch 用来走流程分支,大多情况下用来匹配单个值,如下面的例子所示: /** * @from 微信公众号:Java技术栈 * @author 栈长 */ private static ...