@description@

给定一个整数 N,统计有多少个 0~2N-1 的排列 \(P_0, P_1, ..., P_{2N-1}\) 满足:

\[N^2 \le i^2 + P_i^2 \le (2N)^2 (0 \le i < 2N)
\]

求合法排列数量 mod m。

Constraints

1≤N≤250, 2≤M≤10^9

Input

输入格式如下:

N M

Output

输出合法排列数量 mod m。

Sample Input 1

2 998244353

Sample Output 1

4

@solution@

根据条件 \(N^2 \le i^2 + P_i^2 \le (2N)^2\),我们可以求得 \(P_i\) 的上下界 \(lb_i \le P_i \le rb_i\)。

当 \(0 \le i < N\) 时,\(lb_i = \sqrt{N^2 - i^2}, rb_i = \sqrt{(2N)^2 - i^2}\)。

当 \(N \le i < 2N\) 时,\(lb_i = 0, rb_i = \sqrt{(2N)^2 - i^2}\)。

注意到当 \(i \ge N\) 时 \(lb_i\) 就始终等于 0 了。这意味着有一半元素有着相同下界。

假如 \(lb_i\) 全都为 0,是否有快捷的计算方法呢?

假如 \(lb_i\) 全都为 0,将 \(rb_i\) 从小到大排好序得到 \(rb'_i\),然后从小到大依次考虑每一个 \(rb'_i\) 的贡献。

因为较大的 \(rb'_i\) 一定包含较小的 \(rb'_j\),这意味着无论 j 选择什么,i 总是会少一个可选择的数。

\(rb'_i\) 对应可以选择 \(rb'_i + 1\) 种数(注意可以选 0),删去前面的已经被占用的就只剩\(rb'_i + 1 - i\) 种数(注意下标从 0 开始)。

那么总贡献为 \(\prod_{i=0}^{2N-1}(rb'_i + 1 - i)\)。

对于有下界的情况,考虑经典容斥一波。

枚举哪些数强制 < lb,那么那些数的限制对应变成 \(P_i < lb_i\),即 \(P_i \le lb_i - 1\)。然后就又可以使用我们上面的方法进行计数。

但是这个是指数级的算法。考虑根据题目性质进行优化。

首先只有 0 ~ N-1 这些数可能会 < lb,那么我们只容斥 0 ~ N-1 的部分。

然后,如果你打个表(或者直接观察),你会发现随着 i 增大,\(lb_i\) 与 \(rb_i\) 是递减的。

而我们计数的时候需要排序后的结果,所以这个性质的价值很大。

最后一点,对于 0 ~ N-1 这些数,有 \(\max\{lb\} <= \min\{rb\}\)。

有了这些结论,我们就可以设计我们的算法了。假设我想要求 k 个 < lb 的方案数 f(k):

N ~ 2N-1 这些数只能取 rb 为上界。排完序后那些比它们上界小的,要么是 N ~ 2N-1 中由于单调性而较小的,要么是 0 ~ N-1 中取 lb-1 为上界时比较小的。

0 ~ N-1 这些数,当取 lb-1 为上界时大致同上,要么是 0 ~ N-1 中由于单调性而较小的,要么是 N ~ 2N-1 较小的。

而取 rb 为上界时,首先有 N ~ 2N-1 由于单调性所以所有都比它小,其次那 k 个取 lb-1 为上界的一定比它小(由上面的性质),最后有 0 ~ N 中那些由于单调性而比它小的。

由此,我们将 0 ~ N-1 以 lb-1 为第一关键字,rb 为第二关键字; N ~ 2N-1 以 rb 为第一关键字,0 为第二关键字,全部进行排序。

从小到大作 dp,令 dp(i, j) 表示前 i 个选出 j 个 < lb 的方案数。最后 f(k) = dp(2N, k)。

总方案为 f(0) - f(1) + f(2) - f(3) + ...

时间复杂度 O(n^3)。

@accepted code@

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define mp make_pair
#define fi first
#define se second
typedef pair<int, int> pii;
const int MAXN = 500;
int N, M;
int add(int x, int y) {return (x + y) % M;}
int mul(int x, int y) {return 1LL*x*y % M;}
int sub(int x, int y) {return add(x, M-y);}
int f[MAXN + 5][MAXN + 5]; pii a[MAXN + 5];
int solve(int t) {
int cnt1 = 0, cnt2 = 0;
f[0][0] = 1;
for(int i=0;i<2*N;i++) {
if( a[i].se == 0 ) {
for(int j=0;j<=cnt2;j++)
f[i+1][j] = mul(f[i][j], a[i].fi - (cnt1 + j) + 1);
cnt1++;
}
else {
f[i+1][0] = 0;
for(int j=0;j<=cnt2;j++)
f[i+1][j+1] = mul(f[i][j], a[i].fi - (cnt1 + j) + 1);
for(int j=0;j<=cnt2;j++)
f[i+1][j] = add(f[i+1][j], mul(f[i][j], a[i].se - (N + cnt2 - j + t) + 1));
cnt2++;
}
}
return f[2*N][t];
}
int main() {
scanf("%d%d", &N, &M);
for(int i=0;i<N;i++) {
a[i].fi = 0, a[i].se = 2*N - 1;
while( a[i].fi*a[i].fi + i*i < N*N ) a[i].fi++; a[i].fi--;
while( a[i].se*a[i].se + i*i > 4*N*N ) a[i].se--;
}
for(int i=N;i<2*N;i++) {
a[i].fi = 2*N - 1, a[i].se = 0;
while( a[i].fi*a[i].fi + i*i > 4*N*N ) a[i].fi--;
}
sort(a, a + 2*N);
int ans = 0;
for(int i=N;i>=0;i--)
ans = sub(solve(i), ans);
printf("%d\n", ans);
}

@details@

抱歉,我不会组合计数.jpg。

@atcoder - AGC036F@ Square Constraints的更多相关文章

  1. [Atcoder AGC029C]Lexicographic constraints

    题目大意:给定$n$个字符串的长度$a_i$,问至少用几种字符可以构造出字符串$s_1\sim s_n$,满足$|s_i|=a_i$且$s_1<s_2<\cdots<s_n$. $ ...

  2. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  3. hs-black 杂题选讲

    [POI2011]OKR-Periodicity 考虑递归地构造,设 \(\text{solve(s)}\) 表示字典序最小的,\(\text{border}\) 集合和 \(S\) 的 \(\tex ...

  4. AtCoder Grand Contest 036

    Preface 这篇已经鸽了好久的说,AGC037都打完了才回来补所以题目可能都记不大清楚了,如有错误请指正 这场感觉难度远高于上一场,从D开始就不会了,E没写(看了题解都不会写),F就是抄曲明姐姐的 ...

  5. AtCoder Grand Contest 036 简要题解

    从这里开始 比赛目录 Problem A Triangle 考虑把三角形移到和坐标轴相交,即 然后能够用坐标比较简单地计算面积,简单构造一下就行了. Code #include <bits/st ...

  6. ZROI 暑期高端峰会 A班 Day1 组合计数

    AGC036F Square Constriants 一定有 \(l_i<p_i\le r_i\). 考虑朴素容斥,枚举每个数是 \(\le l_i\) 还是 \(\le r_i\).对于 \( ...

  7. AtCoder Beginner Contest 069【A,水,B,水,C,数学,D,暴力】

    A - K-City Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement In K-city, ...

  8. AtCoder Beginner Contest 088 (ABC)

    A - Infinite Coins 题目链接:https://abc088.contest.atcoder.jp/tasks/abc088_a Time limit : 2sec / Memory ...

  9. AtCoder Beginner Contest 087 (ABC)

    A - Buying Sweets 题目链接:https://abc087.contest.atcoder.jp/tasks/abc087_a Time limit : 2sec / Memory l ...

随机推荐

  1. 移动端 Iphone拍照变横问题的解决

    在移动端的页面需要做用户拍照上传的功能时会有用,苹果即使竖着拍照,上传到网页后它也会变成横的,好像IOS得一个BUG,安卓就没有这个问题. 要解决这个问题需要引入exif.js这个库,网上随便搜一下就 ...

  2. 10分钟完成 mongodb replSet 部署

    开始: ------------------------------------------------------------------------------------------------ ...

  3. MySQL--修改Mac中的默认编码

    1.在终端中进入到etc目录下 2.打开etc目录下的my.cnf文件(如果这样修改不了的就要提高用户权限, 可以尝试使用sudo来打开文件) 3.将一下内容添加到my.cnf文件中 [client] ...

  4. SPFA(Bellman-Ford队列优化)

    原理:队列+松弛操作 将源点加入队尾,每一步读取队头顶点u,并将队头顶点u出队(记得消除标记):将与点u相连的所有点v进行松弛操作,如果能更新距离(即令d[v]变小),那么就更新,另外,如果点v没有在 ...

  5. 洛谷P1621 集合 [2017年6月计划 数论13]

    P1621 集合 题目描述 现在给你一些连续的整数,它们是从A到B的整数.一开始每个整数都属于各自的集合,然后你需要进行一下的操作: 每次选择两个属于不同集合的整数,如果这两个整数拥有大于等于P的公共 ...

  6. Leetcode633.Sum of Square Numbers平方数之和

    给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c. 示例1: 输入: 5 输出: True 解释: 1 * 1 + 2 * 2 = 5 示例2: 输入: 3 ...

  7. vue-eslint配置文件

    做项目的时候,我把eslint设置为了false,可想而知提交会产生的冲突 让我一个一个解决肯定不可能的,eslint的rule很多 在vue的配置文件.eslintrc.js中配置以下选项 这样只需 ...

  8. Djangog写XXOO管理的要求以及思路

  9. Faster RCNN算法demo代码解析

    一. Faster-RCNN代码解释 先看看代码结构: Data: This directory holds (after you download them): Caffe models pre-t ...

  10. ML面试1000题系列(61-70)

    本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 61.说说共轭梯度法? @wtq1993,htt ...