@description@

JOHNKRAM 最近在研究排序网络,但他发现他不会制作比较器,于是他用交换器来代替比较器。

一个交换器有两个输入端 x, y 和两个输出端 x′, y′​​。如果交换器处于关闭状态,则 x 收到的信号会从 x′ 发出,y 收到的信号会从 y′ 发出。如果交换器处于开启状态,则 x 收到的信号会从 y′ 发出,y 收到的信号会从 x' 发出。

JOHNKRAM 设计了这样一个递归定义的网络:

(1)1阶网络就是一个交换器。

(2)n (n>1) 阶网络的第一排是 2^(n−1) 个交换器,接下来是两个 n−1 阶网络,最后一排也是2^(n−1) 个交换器。

将第一排的输出端和第二排的输入端分别从左到右标号为 0∼2^n−1,第一排的 i 输出端连接到第二排的 i>>1 输入端,其中 >> 指n位二进制数的循环右移。

类似,将倒数第一排的输入端和倒数第二排的输出端分别从左到右标号为 0∼2^n−1,倒数第二排的 i 输出端连接到倒数第一排的 i<<1 输入端,其中 << 指 n 位二进制数的循环左移。

一个3阶的网络如下图所示:

JOHNKRAM 通过开关交换器来调整网络。现在他对一个 n 阶网络的 2^n 个输入端分别输入了一个数,第 i (0≤i<2^n) 个输入端输入的是 i。然后他给出了一个长度为 2^n 的排列 p。他希望你给出一种网络的状态,使得第 i (0≤i<2^n) 个输出端输出的是 pi。

input

包括不超过 10 组数据,每组数据包含两行。

第一行包含一个整数 n,其中 1≤n≤13。

第二行 2^n 个整数表示排列 p。

输入以 0 结尾。

output

如果无解,输出 -1。

否则输出 2n - 1 行,每行包含 2^(n-1) 位的二进制数,表示网络的状态。如果那一位的交换器开启则为 1,否则为 0。

如果有多解,输出字典序最小的解。

每组数据输出之间用空行隔开。

sample input

2

3 2 1 0

3

3 7 4 0 2 6 1 5

0

sample output

00

11

11

0011

0000

0110

1111

1101

@solution@

递归定义的结构可以使用递归求解(要用递归打败递归!)

在 n 阶网络中,不难发现对于第一行的交换器而言,它的左输出端只会连接到左边的 n-1 阶网络,右输出端只会连接到右边的 n-1 阶网络。同理对最后一行的交换器,它的左输入端只会连接到左边的 n-1 阶网络,右输入端只会连接到右边的 n-1 网络。

同时,我们发现如果开启第一行的交换器,只会影响输入端的两个数哪一个进左边的网络,哪一个进右边的网络。最后一行同理。

记 a[i] 表示第一行第 i 个交换器是否打开(打开为 1,否则为 0),b[i] 表示最后一行第 i 个交换器是否打开。

记 c[i] 表示数 i 在第一行哪个交换器输入, d[i] 表示数 i 在最后一行哪个交换器输出。

记 e[i] 表示数 i 在第一行的交换器的左边输入还是右边输入(左边为 0,右边为 1),f[i] 表示数 i 在最后一行的交换器的左边输入还是右边输入。

则如果一个网络合法,对于每一个数 i,一定满足 e[i] xor f[i] xor a[c[i]] xor b[d[i]] = 0。

因为是求字典序最小的解,所以可以在第一行从左到右枚举每一个交换器是 0 还是 1,再通过上面那个式子 bfs 进行合法性判定。

决定好了第一行与最后一行,就可以递归解决两个 n-1 阶的子问题。总时间复杂度 O(2^(2n))。

题目虽然说无解输出 -1,但实际上总是有解,可以通过归纳法证明(虽然我代码还是判了无解的)。

为了实现简单可以总是将第一行的输入端调成 0 1 2 3…… 的形式。

@accepted code@

#include<cstdio>
#include<queue>
using namespace std;
const int MAXN = 13;
int x[1<<MAXN], y[1<<MAXN], tp;
int ans[MAXN<<1][1<<MAXN];
int a[1<<MAXN], n, s, t, u;
int tmp1[1<<MAXN], tmp2[1<<MAXN], tmp3[1<<MAXN], tmp4[1<<MAXN];
int stk3[1<<MAXN], stk4[1<<MAXN], tp3, tp4;
queue<int>que;
void restore() {
while( tp3 ) tmp3[stk3[tp3--]] = -1;
while( tp4 ) tmp4[stk4[tp4--]] = -1;
}
bool check(int x, int y) {
stk3[++tp3] = x, tmp3[x] = y;
que.push(x<<1), que.push(x<<1|1);
while( !que.empty() ) {
int f = que.front(); que.pop();
if( f < (u<<1) ) {
if( tmp4[tmp2[f]>>1] != -1 ) {
if( (tmp3[f>>1] == tmp4[tmp2[f]>>1]) != ((f&1) == (tmp2[f]&1)) ) {
restore();
return false;
}
}
else {
stk4[++tp4] = tmp2[f]>>1;
tmp4[tmp2[f]>>1] = (f&1)^(tmp2[f]&1)^tmp3[f>>1];
que.push((tmp2[f]^1) + (u<<1));
}
}
else {
f -= (u<<1);
if( tmp3[tmp1[f]>>1] != -1 ) {
if( (tmp3[tmp1[f]>>1] == tmp4[f>>1]) != ((f&1) == (tmp1[f]&1)) ) {
restore();
return false;
}
}
else {
stk3[++tp3] = tmp1[f]>>1;
tmp3[tmp1[f]>>1] = (f&1)^(tmp1[f]&1)^tmp4[f>>1];
que.push(tmp1[f]^1);
}
}
}
tp3 = tp4 = 0;
return true;
}
int main() {
freopen("left.in", "r", stdin);
freopen("left.out", "w", stdout);
while( scanf("%d", &n) == 1 && n ) {
s = (1<<n), t = (s>>1);
for(int i=0;i<s;i++)
scanf("%d", &a[i]);
bool flag = true;
for(int i=n;i>=1;i--) {
/*printf("| ");
for(int j=0;j<s;j++)
printf("%d ", a[j]);
puts("");*/
u = (1<<(i-1));
for(int j=0;j<t;j+=u) {
for(int k=0;k<u;k++) {
tmp1[k<<1] = a[(j+k)<<1], tmp1[k<<1|1] = a[(j+k)<<1|1];
tmp2[tmp1[k<<1]] = k<<1, tmp2[tmp1[k<<1|1]] = k<<1|1;
tmp3[k] = tmp4[k] = -1;
}
for(int k=0;k<u;k++) {
if( tmp3[k] == -1 ) {
if( !check(k, 0) && !check(k, 1) ) {
flag = false;
break;
}
}
}
for(int k=0;k<u;k++)
ans[n-i+1][j+k] = tmp3[k], ans[n+i-1][j+k] = tmp4[k];
for(int k=0;k<u;k++) {
if( !tmp4[k] ) a[(j<<1)+k] = (tmp1[k<<1]>>1), a[(j<<1)+k+u] = (tmp1[k<<1|1]>>1);
else a[(j<<1)+k] = (tmp1[k<<1|1]>>1), a[(j<<1)+k+u] = (tmp1[k<<1]>>1);
// printf(". %d %d\n", j+k, j+k+u); /*printf("| ");
for(int j=0;j<s;j++)
printf("%d ", a[j]);
puts("");*/
}
if( !flag ) break;
}
if( !flag ) break;
}
if( !flag ) puts("-1");
else {
for(int i=1;i<=2*n-1;i++) {
for(int j=0;j<t;j++)
printf("%d", ans[i][j]);
puts("");
}
}
puts("");
}
}

@details@

康复计划 - 8。

切水题是真爽~

有一个很烦的细节就是比较器与输入输出端的下标转换。

@NOI模拟2017.06.30 - T1@ Left的更多相关文章

  1. @NOI模拟2017.06.30 - T3@ Right

    目录 @description@ @solution@ @part - 1@ @part - 2@ @accepted code@ @details@ @description@ JOHNKRAM 和 ...

  2. @NOI模拟2017.07.02 - T1@ Attack

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 『新的风暴已经出现,怎么能够停滞不前』--你决定去攻击小怪兽的巢 ...

  3. 7.11 NOI模拟赛 qiqi20021026的T1 四个指针莫队 trie树

    LINK:qiqi20021026的T1 考场上只拿到了50分的\(nq\)暴力. 考虑一个区间和一个区间配对怎么做 二分图最大带权匹配复杂度太高. 先考虑LCS的问题 常见解决方法是后缀数组/tri ...

  4. 5.30 NOI 模拟

    $5.30\ NOI $模拟 高三大哥最后一次模拟考了,祝他们好运 \(T1\)装箱游戏 显然可以将四种字母之间的空缺当做状态枚举 那么这道题就很显然了 #include<bits/stdc++ ...

  5. 5.23 NOI 模拟

    $5.23\ NOI $模拟 \(T1\)简单的计算几何题 \(zjr:\)我当时没改,那么自己看题解吧 倒是有个简单的随机化方法(能获得\(72pts,\)正确性未知)\(:\) 随机两条切椭圆的平 ...

  6. 5.6 NOI模拟

    \(5.6\ NOI\)模拟 明天就母亲节了,给家里打了个电话(\(lj\ hsez\)断我电话的电,在宿舍打不了,只能用教练手机打了) 其实我不是很能看到自己的\(future,\)甚至看不到高三的 ...

  7. 5.4 NOI模拟

    \(5.4\ NOI\)模拟 \(T1\) 想到分讨,但是暴力输出一下方案之后有很多特别的情况要讨论,就弃了... 假设\(a\)是原序列,\(b\)是我们得到的序列 设\(i\)是最长公共前缀,\( ...

  8. hdu6034[模拟] 2017多校1

    /*hdu6034[模拟] 2017多校1*/ //暴力模拟26个26进制数即可, 要注意进位 #include<bits/stdc++.h> using namespace std; t ...

  9. 【NOI】2017 蚯蚓排队(BZOJ 4943,LOJ 2303) 模拟+hash

    [题目]#2303. 「NOI2017」蚯蚓排队 [题意]给定n条长度不超过6的蚯蚓,初始各自在一个队伍.m次操作:1.将i号蚯蚓和j号蚯蚓的队伍合并(保证i为队尾,j为队首).2.将i号蚯蚓和它后面 ...

随机推荐

  1. IO流8 --- 使用FileReader和FileWriter实现文本文件的复制 --- 技术搬运工(尚硅谷)

    @Test public void test4(){ FileReader fr = null; FileWriter fw = null; try { fr = new FileReader(&qu ...

  2. Oracle锁表查杀会话进程

    一.逐条--锁表 (1)查表名 和 sessionidselect b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_obj ...

  3. day37 02-Hibernate二级缓存:二级缓存的散装数据

    一级缓存存放的是对象的地址.把对象的地址缓存下来了.二级缓存里面存放的是对象的散装数据.你再去获取的时候,因为一级缓存的生命周期结束了,它会从二级缓存中获取.从二级缓存中获取,因为它又会得到一个对象. ...

  4. python实例 列表

    #! /usr/bin/python # -*- coding: utf8 -*- #列表类似Javascript的数组,方便易用 #定义元组 word=['a','b','c','d','e','f ...

  5. Leetcode33.Search in Rotated Sorted Array搜索旋转排序数组

    假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 搜索一个给定的目标值,如果数组中存在这个目标值, ...

  6. js 正则去除html代码

    function delHtmlTag(str){ return str.replace(/<[^>]+>/g,"");//去掉所有的html标记 }

  7. MongoDB 定位 oplog 必须全表扫描吗?

    MongoDB oplog (类似于 MySQL binlog) 记录数据库的所有修改操作,除了用于主备同步:oplog 还能玩出很多花样,比如 全量备份 + 增量备份所有的 oplog,就能实现 M ...

  8. LintCode刷题笔记-- Distinct Subsequences

    标签:动态规划 题目描述: Given a string S and a string T, count the number of distinct subsequences of T in S. ...

  9. GDOI2017第四轮day1总结

    总的来说这场比赛,只能说是勉强正常发挥. 实在是知识水平有限,最后没能突破瓶颈. 有几个做得好的地方: 1.想好了在写题: 2.暴力也会拍 3.适当地放弃题. 要学习的东西: 1.Sg,线性基: 2. ...

  10. sqlserver 取月初月末的时间

    1.取月初的时间   --getdate() :2012/05/08  19:29:00 select convert(varchar,dateadd(day,-day(getdate())+1,ge ...