小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。

可是使用莫队算法,我们移动的时候,计算贡献即可,那么如何计算贡献呢??

我们知道对于cnt[i]^2 ,也就数字i对应现在的值是cnt[i]^2,那么如果当前点的答案是如此的,我们现在要吧cnt[i]+1,那么如何加上去呢?

简单的方法就是让答案加上(cnt[i]+1)^2-(cnt[i])^2,其实吧式子展开就是贡献加上2cnt[i]+1。减法也是一样,但是需要注意的是贡献减去2*cnt[i]-1,列一下式子就知道了

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int maxx = 1e5+;
int block;
int res;
int a[maxx];
LL vis[maxx];
LL ans[maxx];
struct node{
int l,r;
int id;
friend bool operator < (node &a,node &b){
if (a.l/block==b.l/block){
return a.r<b.r;
}
return a.l/block<b.l/block;
}
}q[maxx];
void add(int x){
res+=(*vis[a[x]]+);
vis[a[x]]++;
}
void del(int x){
res-=(*vis[a[x]]-);
vis[a[x]]--;
}
int main(){
int n,m,k;
int l,r;
while(~scanf("%d%d%d",&n,&m,&k)){
memset(vis,,sizeof(vis));
res=;
block=sqrt(n);
for (int i=;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
}
sort(q+,q++m);
int l=,r=;
for (int i=;i<=m;i++){
while(l<q[i].l){
del(l);
l++;
}
while(l>q[i].l){
l--;
add(l);
}
while(r<q[i].r){
r++;
add(r);
}
while(r>q[i].r){
del(r);
r--;
}
ans[q[i].id]=res;
}
for (int i=;i<=m;i++){
printf("%lld\n",ans[i]);
}
}
return ;
}

洛谷P2709 小B的询问 莫队的更多相关文章

  1. 洛谷P2709 小B的询问 莫队做法

    题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...

  2. 洛谷.2709.小B的询问(莫队)

    题目链接 /* 数列的最大值保证<=50000(k),可以直接用莫队.否则要离散化 */ #include<cmath> #include<cstdio> #includ ...

  3. 洛谷——P2709 小B的询问

    P2709 小B的询问 莫队算法,弄两个指针乱搞即可 这应该是基础莫队了吧 $x^2$可以拆成$((x-1)+1)^2$,也就是$(x-1)^2+1^2+2\times (x-1)$,那么如果一个数字 ...

  4. 洛谷 P2709 小B的询问(莫队)

    题目链接:https://www.luogu.com.cn/problem/P2709 这道题是模板莫队,然后$i$在$[l,r]$区间内的个数就是$vis[ ]$数组 $add()$和$del()$ ...

  5. [洛谷 P2709] 小B的询问

    P2709 小B的询问 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数 ...

  6. 【刷题】洛谷 P2709 小B的询问

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  7. [题解]洛谷P2709 小B的询问

    地址 是一道莫队模板题. 分析 设\(\text{vis[i]}\)表示元素\(\text{i}\)出现的次数 当一个元素进入莫队时,它对答案的贡献增加.有\(\delta Ans=(X+1)^2-X ...

  8. 洛谷P2709 小B的询问

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  9. P2709 小B的询问-莫队

    思路 :依旧是 分块 块内按照 r 排序 不同块按照 L排序,处理好增加 删除对结果的影响即可. #include<bits/stdc++.h> using namespace std; ...

随机推荐

  1. 使用Docker 安装Elasticsearch、Elasticsearch-head、IK分词器 和使用

    原文:使用Docker 安装Elasticsearch.Elasticsearch-head.IK分词器 和使用 Elasticsearch的安装 一.elasticsearch的安装 1.镜像拉取 ...

  2. js封装ajax的方法

    常用的ajax请求方法封装 /** * ajax请求的封装代码 */ function ajaxPost(url, params, cb) { $.ajax({ type : 'post', url ...

  3. 小飞音箱wifi配网流程

    音箱出货时,已经内置wifi,如果无法接通,按照如下方案执行: 小飞音箱wifi配网流程 0. 接通音箱电源 通电3分钟后,音箱如果显示红色光圈,表示未联网,则需要手动联网 1. 手机下载小飞在线ap ...

  4. iOS 7: 如何为iPhone 5s编译64位应用

    随着iPhone 5S的推出,大家开始关心5S上所使用的64位CPU A7. 除了关心A7的性能以外,大家还会关心一个问题,那就是使用A7的64位系统对应用有没有什么要求.特别是应用开发者,大家都比较 ...

  5. 从0开始学习 GitHub 系列之「07.GitHub 常见的几种操作」

    之前写了一个 GitHub 系列,反响很不错,突然发现竟然还落下点东西没写,前段时间 GitHub 也改版了,借此机会补充下. 我们都说开源社区最大的魅力是人人多可以参与进去,发挥众人的力量,让一个项 ...

  6. 如何成功安装旧版本火狐,成功安装firebug

    1.下载一个老版本火狐浏览器: 历史版本下载 2.下载安装完成后,立即在火狐浏览器的选项设置里面把自动更新关闭 3.手动安装firebug:最后搜到可以下载成功的地址:http://www.onlin ...

  7. GDSOI2017第三轮模拟4.21 总结

    1 第一题看着就觉得猎奇,于是就想着打暴力就跑. 但是很严重的问题就是... \(D\)和\(B\)打反了,都不知道当时在干什么??? 原本可以拿35. 2 第二题看着就觉得套路,于是想着今天就攻这题 ...

  8. C++通配符

    #include<iostream>using namespace std;bool PathernMatch(char *pat, char *str){ char *s = NULL; ...

  9. Markdown Linux

    如何在Linux下使用Markdown进行文档工作 学习于: http://www.ituring.com.cn/article/10044 Markdown 官网: http://daringfir ...

  10. 【JZOJ4899】【NOIP2016提高A组集训第17场11.16】雪之国度

    题目描述 雪之国度有N座城市,依次编号为1到N,又有M条道路连接了其中的城市,每一条道路都连接了不同的2个城市,任何两座不同的城市之间可能不止一条道路.雪之女王赋予了每一座城市不同的能量,其中第i座城 ...