CF933A A Twisty Movement
题意翻译
给定一个序列 A,你可以翻转其中的一个区间内的数,求翻转后的序列的最长不下降子序列的长度。(∣A∣≤2000,1≤ai≤2|A|\le 2000,1\le a_i \le 2∣A∣≤2000,1≤ai≤2 )
感谢@touristWang 提供的翻译
题目描述
A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.
A performer holding the rod low is represented by a 1 1 1 , while one holding it high is represented by a 2 2 2 . Thus, the line of performers can be represented by a sequence a1,a2,...,an a_{1},a_{2},...,a_{n} a1,a2,...,an .
Little Tommy is among them. He would like to choose an interval [l,r] [l,r] [l,r] ( 1<=l<=r<=n 1<=l<=r<=n 1<=l<=r<=n ), then reverse al,al+1,...,ar a_{l},a_{l+1},...,a_{r} al,al+1,...,ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.
A non-decreasing subsequence is a sequence of indices p1,p2,...,pk p_{1},p_{2},...,p_{k} p1,p2,...,pk , such that p1<p2<...<pk p_{1}<p_{2}<...<p_{k} p1<p2<...<pk and ap1<=ap2<=...<=apk a_{p1}<=a_{p2}<=...<=a_{pk} ap1<=ap2<=...<=apk . The length of the subsequence is k k k .
输入输出格式
输入格式:
The first line contains an integer n n n (1<=n<=2000) (1<=n<=2000) (1<=n<=2000) , denoting the length of the original sequence.
The second line contains n n n space-separated integers, describing the original sequence a1,a2,...,an a_{1},a_{2},...,a_{n} a1,a2,...,an (1<=ai<=2,i=1,2,...,n) (1<=a_{i}<=2,i=1,2,...,n) (1<=ai<=2,i=1,2,...,n) .
输出格式:
Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.
输入输出样例
4
1 2 1 2
4
10
1 1 2 2 2 1 1 2 2 1
9
说明
In the first example, after reversing [2,3], the array will become [1,1,2,2] , where the length of the longest non-decreasing subsequence is 4 .
In the second example, after reversing [3,7] , the array will become [1,1,1,1,2,2,2,2,2,1] , where the length of the longest non-decreasing subsequence is 9 .
Solution:
本题思维题。
因为$a_i$只有$1,2$两种可能,于是我们可以确定的是答案一定是:$[1,1,1,…]\;[2,2,2…]\;[1,1,1…]\;[2,2,2…]$这样的四段子序列(每一段都允许为空),使得第二、三段所在区间翻转得到答案(不翻转可以理解为二、三段为空序列)。
解法一:
我们可以从左往右做前缀和$ct1[i]$表示$[1,i]$出现的$1$的个数,同理做出后缀和$ct2[i]$表示$[i,n]$出现的$2$的个数。然后我们枚举断点$k,k\in[1,n+1]$(即二、三段的分界点),设一、二段的分界点为$p,p\in[1,k]$,三、四段的分界点为$q,q\in[k,n+1]$,那么显然答案为$(ct1[p-1])+(ct2[p]-ct2[k])+(ct1[q-1]-ct1[k])+(ct2[q])$,式子中括号括起来的为一段,这个式子可以化为$(ct1[p-1]+ct2[p]+ct1[q-1]+ct2[q])-(ct1[k]+ct2[k]),p\in[1,k],q\in[k,n+1]$,注意到对于一个确定的$k$,我们要最大化前面括号的式子,而前者可以用线段树维护下$ct1[i-1]+ct2[i]$,那么只用枚举$k$,再两次区间最大值查询,更新答案就好了。
时间复杂度$O(n\log n)$。
代码:
/*Code by 520 -- 10.20*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int N=;
int n,ans,ct1[N],ct2[N],a[N],ppx[N];
struct SGT{
int maxn[N<<];
il void pushup(int rt){maxn[rt]=max(maxn[rt<<],maxn[rt<<|]);}
void build(int l,int r,int rt){
if(l==r) {maxn[rt]=ppx[l];return;}
int m=l+r>>;
build(lson),build(rson);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt){
if(L<=l&&R>=r) return maxn[rt];
int m=l+r>>,res=;
if(L<=m) res=max(res,query(L,R,lson));
if(R>m) res=max(res,query(L,R,rson));
return res;
}
}T; int main(){
scanf("%d",&n); int t1,t2;
For(i,,n) scanf("%d",a+i),ct1[i]=ct1[i-]+(a[i]==);
Bor(i,,n) ct2[i]=ct2[i+]+(a[i]==);
For(i,,n+) ppx[i]=ct1[i-]+ct2[i];
T.build(,n+,);
For(k,,n+) {
t1=T.query(,k,,n+,),t2=T.query(k,n+,,n+,);
ans=max(ans,t1+t2-ct1[k-]-ct2[k]);
}
cout<<ans;
return ;
}
解法二:
我们显然(事实上考试只想出了解法一)可以用DP来维护每段的最大值。
定义状态$f[i][1]$表示前$i$个数中前一段的答案,$f[i][2]$表示前$i$个数中前两段的答案,$f[i][3]$表示前$i$个数中前三段的答案,$f[i][4]$表示前$i$个数中前四段的答案。
那么不难得到状态转移方程:
$f[i][1]=f[i-1][1]+(a_i==1)$
$f[i][2]=max(f[i-1][1],f[i-1][2]+(a_i==2))$
$f[i][3]=max(f[i-1][2],f[i-1][3]+(a_i==1))$
$f[i][4]=max(f[i-1][3],f[i-1][4]+(a_i==2))$
显然第一维是可以压掉的,时间复杂度$O(n)$。
代码:
/*Code by 520 -- 10.20*/
#include<bits/stdc++.h>
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
using namespace std;
int n,x,f[]; int main(){
scanf("%d",&n);
For(i,,n)
scanf("%d",&x),
f[]+=(x==),
f[]=max(f[],f[]+(x==)),
f[]=max(f[],f[]+(x==)),
f[]=max(f[],f[]+(x==));
cout<<f[];
return ;
}
CF933A A Twisty Movement的更多相关文章
- Codeforces 934C - A Twisty Movement
934C - A Twisty Movement 思路:dp 很容易想到要预处理出1的前缀和pre[i]和2的后缀和suf[i] 然后枚举区间,对于每个区间如果能求出最长递减序列的长度,那么就能更新答 ...
- Codeforces 934.C A Twisty Movement
C. A Twisty Movement time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #462 (Div. 2) C. A Twisty Movement
C. A Twisty Movement time limit per test1 second memory limit per test256 megabytes Problem Descript ...
- CF933A/934C A Twisty Movement
思路: 实际上是求原序列中最长的形如1......2......1......2......的子序列的长度.令dp[i][j](1 <= j <= 4)表示在子序列a[1]至a[i]中形如 ...
- [Codeforces 933A]A Twisty Movement
Description 题库链接 给你一个长度为 \(n\) 的只含有 \(1,2\) 的序列.你可以选择其中的一段 \([l,r]\) ,将区间翻转,翻转后使得单调不下降序列最长.求最长长度. \( ...
- cf934C. A Twisty Movement(思维题)
题意 题目链接 Sol 这题最直接的维护区间以0/1结尾的LIS的方法就不说了. 其实我们可以直接考虑翻转以某个位置为中点的区间的最大值 不难发现前缀和后缀产生的贡献都是独立的,可以直接算.维护一下前 ...
- E - A Twisty Movement
A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with ba ...
- Codeforces Round #462 (Div. 2), problem: (C) A Twisty Movement (求可以转一次区间的不递增子序列元素只有1,2)
题目意思: 给长度为n(n<=2000)的数字串,数字只能为1或者2,可以将其中一段区间[l,r]翻转,求翻转后的最长非递减子序列长度. 题解:求出1的前缀和,2的后缀和,以及区间[i,j]的最 ...
- 【Codeforces 933A】A Twisty Movement
[链接] 我是链接,点我呀:) [题意] [题解] 因为只有1和2. 所以最后肯定是若干个1接着若干个2的情况. 即11...11222...222这样的. 1.首先考虑没有翻转的情况. 那么就直接枚 ...
随机推荐
- HDU 1203 I NEED A OFFER!(01背包+简单概率知识)
I NEED A OFFER! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
- jquery练习笔记
<!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- 所做更改会影响共用模板Normal.dotm。是否保存此更改
最近安装了Office 2010版本,但是发现个问题,每次在关闭word 2010时,都会提示所做更改会影响共用模板Normal.dotm …… 确实是烦恼,每次都需要点击是否保存,于是我在仔细研究了 ...
- 一文让您全面了解清楚HBase数据库的所有知识点,值得收藏!
一.HBase基本概念:列式数据库 在Hadoop生态体系结构中,HBase位于HDFS(Hadoop分布式文件系统)的上一层,不依赖于MapReduce,那么如果没有HBase这种Nosql数据库会 ...
- 小R的烦恼 BZOJ3280
分析: 一开始一直Wa,发现是建图建错了,必须得拆点. S连i,流量为a[i],费用为0,i+n连T,流量同上,费用为0,之后i连i+1费用为0,流量为inf,之后S连n*2+i,流量为li,费用为0 ...
- 现有工程中集成Cordova
cocoapods引入cordova源码 1.依赖Cordova和wk插件 pod 'Cordova' pod 'cordova-plugin-wkwebview-engine' 建立Cordova支 ...
- HDFS--大数据应用的基石
近些年,由于智能手机的迅速普及推动移动互联网技术的蓬勃发展,全球数据呈现爆发式的增长.2018年5月企鹅号的统计结果:互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年 ...
- python 回溯法 子集树模板 系列 —— 15、总结
作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...
- 解决:Linux SSH Secure Shell(ssh) 超时断开的解决方法
转载:http://www.cnblogs.com/jifeng/archive/2011/06/25/2090118.html 修改/etc/ssh/sshd_config文件,找到 ClientA ...
- Oracle实用地址
1.详细安装教程 https://jingyan.baidu.com/article/3c48dd34be2a32e10be35881.html