问题描述

给定g个group,n个id,n<=g.我们将为每个group分配一个id(各个group的id不同)。但是每个group分配id需要付出不同的代价cost,需要求解最优的id分配方案,使得整体cost之和最小。

例子

例如以下4个group,三个id,value矩阵A

value id1 id2 id3
H1 4 3 0
H2 1 0 0
H3 2 0 2
H4 3 1 0

id_i分配给H_j的代价\(changing cost[i, j]=\sum(A[j,:])-A[j,i]\)。
例如,如果给H1指定id1,则value=4被保留,但是需要付出changing cost为3.

我们需要为H1-H4分别指定一个id1-id3,id4(新建的id),目标是是的总体的changing cost最小。
例子中最优的分配结果是:
H1 <- id2,
H2 <- New ID,
H3 <- id3,
H4 <- id1,
对应的changing cost=8 (4 + 1 + 2 + 1)。

Min-cost Max flow算法

Use min-cost max flow here
Connect source to all ids with capacity 1, connect each id to each h with capacity 1 and cost= -a[id[i], h[j]] (as you need to find maximums actually), and then connect all hs with sink with capacity 1.
After applying min-cost max flow, you will have flow in those (i, j) where you should assign i-th id to j-th h. New ids for other hs.

因为capacity=1,算法最终结果f[i,j]只可能取值0/1。所以,如果f[i,j]=1,则id_i被分配给h_j.


Here is a possible solution of the problem with some help of [min cost max flow algorithm:
http://web.mit.edu/~ecprice/acm/acm08/MinCostMaxFlow.java https://en.wikipedia.org/wiki/Minimum-cost_flow_problem.

The basic idea is to translate consumer id, group id to vertex of graph, translate our constrains to constrains of MinCostMaxFlow problem.

As for POC, I used the source code from website (web.mit.edu), did some change and checked in the algorithm to trunk.
I added unit test RuleBasedOptimizerTest.test6() to test the 66x 4 case, which runs successfully in milliseconds.
Also, test was done on the data which caused time out before, and this time it is fast.

Steps of the algorithm:

Create the flow network:

  1. Introduce a source vertex, a sink vertex;
  2. Each consumerid is a vertex, each groupid is a vertex;
  3. Connect source to each consumerId, each edge has capacity 1;
  4. Connect each consumerId to groupId, each edge has capacity 1;
  5. Connect each groupId to sink, each edge has capacity 1;
  6. The cost of a(u, v) is from the cost table, but we need to take -1 x frequency.

Calculate max flow of the network, and get the flow matrix.

  • If there is flow from cid_i to gid_k then we assign the cid_i to the gid_k;
  • If there is no flow to gid_k, then we assign a new id to gid_k.

Algorithm complex

is O(min(|V|^2 * totflow, |V|^3 * totcost)), where |V|=(#groupid + #consumerId + 2).

min cost max flow算法示例的更多相关文章

  1. LeetCode算法题-Min Cost Climbing Stairs(Java实现)

    这是悦乐书的第307次更新,第327篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第176题(顺位题号是746).在楼梯上,第i步有一些非负成本成本[i]分配(0索引). ...

  2. LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11

    746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...

  3. C#LeetCode刷题之#746-使用最小花费爬楼梯( Min Cost Climbing Stairs)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4016 访问. 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个 ...

  4. HackerRank "Training the army" - Max Flow

    First problem to learn Max Flow. Ford-Fulkerson is a group of algorithms - Dinic is one of it.It is ...

  5. [Swift]LeetCode746. 使用最小花费爬楼梯 | Min Cost Climbing Stairs

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  6. backpropagation算法示例

    backpropagation算法示例 下面举个例子,假设在某个mini-batch的有样本X和标签Y,其中\(X\in R^{m\times 2}, Y\in R^{m\times 1}\),现在有 ...

  7. BZOJ4390: [Usaco2015 dec]Max Flow

    BZOJ4390: [Usaco2015 dec]Max Flow Description Farmer John has installed a new system of N−1 pipes to ...

  8. Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs)

    Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost ...

  9. 详解 Flink DataStream中min(),minBy(),max(),max()之间的区别

    解释 官方文档中: The difference between min and minBy is that min returns the minimum value, whereas minBy ...

随机推荐

  1. django添加装饰器

    引入模块: from django.utils.decorators import method_decorator 添加:@method_decorator(func) from django.ut ...

  2. Struts问题

    1.struts框架的5大组件:mvc,标签库,校验框架,国际化,tiles; 2.struts的9大核心类以及与mvc对应的关系: C ActionServlet RequestProcessor ...

  3. The Django Book(自定义ModelAdmi类)

    默认的,管理界面下显示的东西只是 python2:def __unicode__(self): 和 python3:def __str__(self): 中返回的字段内容 想要让它更加的多元化的话 c ...

  4. 【NIFI】 Apache NiFI 之 ExecuteScript处理(一)

    本例介绍NiFI ExecuteScript处理器的使用,使用的脚本引擎ECMScript FlowFile I / O简介 NiFi中的流文件由两个主要组件构成,即属性和内容.属性是关于内容/流文件 ...

  5. springMVC学习三 注解开发环境搭建

    第一步:导入jar包 第二步:配置DispatcherServlet  前端控制器 因为此处把DsipatcherServlet的映射路径配置成了"/",代表除了.jsp文件之外, ...

  6. IT资产管理详解

  7. canvas 实现圆环效果

    var race = document.getElementById('race'); var cxt = race.getContext('2d'); var ang = 0; var speed ...

  8. 2019.01.02 poj3046 Ant Counting(生成函数+dp)

    传送门 生成函数基础题. 题意:给出nnn个数以及它们的数量,求从所有数中选出i∣i∈[L,R]i|i\in[L,R]i∣i∈[L,R]个数来可能组成的集合的数量. 直接构造生成函数然后乘起来f(x) ...

  9. 2018.06.26「TJOI2018」数学计算(线段树)

    描述 小豆现在有一个数 xxx ,初始值为 111 . 小豆有 QQQ 次操作,操作有两种类型: 111 $ m$ : x=x×mx=x×mx=x×m ,输出 xxx modmodmod MMM : ...

  10. pat -1004(树的遍历)

    题目链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805521431773184 思路: (1)用vector记录每 ...