Punching Robot

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4928

Description

In this problem, you are given a grid map of N ×M (N rows and M

columns) where the rows are numbered 1. . . N from top to bottom,

and the columns are numbered 1. . . M from left to right. Your task

is to count in how many ways you can reach cell (N, M) from cell

(1, 1) given that you are only allowed to move right or downward

at any time, i.e. if your current location is at cell (r, c), then you

can only move to cell (r + 1, c) or (r, c + 1). However, we quickly

realized that this kind of problem could be too easy for you, thus,

not challenging. Therefore, we decided to put K punching robots

in the map. Each punching robot is able to punch any object which

lies in any of 3×3 cells centered at the robot (Figure 1). To simplify

the problem, you may assume that the punching areas of any robot

do not overlap.

Your (new) task is: count in how many ways you can reach cell (N, M) from cell (1, 1) without

being punched by any robot, given that you are only allowed to move right or downward at any time.

As the output can be very large, you need to modulo the output by 997. For example, consider the

following map of 4 x 10 with two punching robots at (3, 3) and (2, 8).

Figure 2.

In this example, there are 4 ways to reach (4, 10) from (1, 1) without being punched by any of the

robots. All those 4 paths only differ when they go from (1, 5) to (4, 6):

• . . . , (1, 5), (1, 6), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (4, 5), (4, 6),

Meanwhile, there is only one unique path from (1, 1) to (1, 5) and from (4, 6) to (4, 10).

Input

The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each case begins

with three integers: N, M, and K (2 ≤ N, M ≤ 1, 000, 000; 0 ≤ K ≤ 10) denoting the size of the map

and the number of punching robots respectively. The following K lines, each contains two integers: Ri

and Ci (1 < Ri < N; 1 < Ci < M) denoting the position of i-th robot (row and column respectively)

in the map. You are guaranteed that, for any two robots, the row difference or the column difference

will be at least 3, i.e. no two robots’ punching areas are overlapping. You are also guaranteed that cell

(1, 1) and cell (N, M) are not in punching areas of any robots.

Output

For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the answer

for that case modulo by 997.

Explanation for 2nd sample case:

The following figure represents the map for the 2nd sample

case.

As you can see, there is no way you can reach (3, 5) from (1,

  1. without being punched by the robot.

Sample Input

4

4 10 2

3 3

2 8

3 5 1

2 3

5 5 0

10 9 3

9 3

6 8

3 4

Sample Output

Case #1: 4

Case #2: 0

Case #3: 70

Case #4: 648

Hint

题意

给你个(n,m)的方格,里面有一些坏的3*3位置,问你从(1,1)到(n,m)的方案数是多少

题解:

我们把3*3的拆成9个坏点,那么这道题就和CF的某道题一样了

http://www.cnblogs.com/qscqesze/p/4669136.html

但是这道题的模数是997,所以取逆元的时候可能有问题,你需要把997单独拿出来讨论一下就好了。

代码

#include<bits/stdc++.h>
using namespace std;
#define maxn 3000005
#define mod 997
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cas=0;
struct Point
{
long long x,y;
}points[maxn];
bool cmp(Point a,Point b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
ll p=mod;
ll fac[maxn],num[maxn];
ll qpow(ll a,ll b)
{
ll ans=1;a%=mod;
for(ll i=b;i;i>>=1,a=a*a%mod)
if(i&1)ans=ans*a%mod;
return ans;
}
ll C(ll n,ll m)
{
if(m>n||m<0)return 0;
if(num[n]!=num[n-m]+num[m]) return 0;
ll s1=fac[n],s2=fac[n-m]*fac[m]%mod;
return s1*qpow(s2,mod-2)%mod;
}
ll f[maxn];
int main()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
{
if(i%997!=0)
fac[i]=fac[i-1]*i%mod,num[i]=num[i-1];
else
{
num[i]=num[i-1];
int tmp=i;
while(tmp%997==0)
num[i]++,tmp/=997;
fac[i]=fac[i-1]*tmp;
}
}
int t;scanf("%d",&t);
while(t--){
int n=read(),m=read(),k=read();
for(int i=1;i<=k;i++)
{
points[i*9-8].x=read();
points[i*9-8].y=read();
points[i*9-8].x-=1;
points[i*9-8].y-=1; points[i*9-7].x=points[i*9-8].x-1;
points[i*9-7].y=points[i*9-8].y-1; points[i*9-6].x=points[i*9-8].x;
points[i*9-6].y=points[i*9-8].y-1; points[i*9-5].x=points[i*9-8].x+1;
points[i*9-5].y=points[i*9-8].y-1; points[i*9-4].x=points[i*9-8].x-1;
points[i*9-4].y=points[i*9-8].y; points[i*9-3].x=points[i*9-8].x+1;
points[i*9-3].y=points[i*9-8].y; points[i*9-2].x=points[i*9-8].x-1;
points[i*9-2].y=points[i*9-8].y+1; points[i*9-1].x=points[i*9-8].x;
points[i*9-1].y=points[i*9-8].y+1; points[i*9].x=points[i*9-8].x+1;
points[i*9].y=points[i*9-8].y+1;
}
k*=9;
points[++k].x=n-1;
points[k].y=m-1;
sort(points+1,points+k+1,cmp);
for(int i=1;i<=k;i++)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
for(int j=1;j<i;j++)
{
if(points[j].y<=points[i].y)
{
f[i]+=(p-f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]%=p;
}
}
}
printf("Case #%d: %lld\n",++cas,f[k]%p);
}
}

UVALive 6916 Punching Robot dp的更多相关文章

  1. UVALive - 6916 Punching Robot Lucas+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...

  2. 【BZOJ1408】[Noi2002]Robot DP+数学

    [BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...

  3. UVALive - 6952 Cent Savings dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/116998 Cent Savings Time Limit: 3000MS 问题描述 To host a re ...

  4. UVALive - 6529 找规律+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/47664 Eleven Time Limit: 5000MS 问题描述 In this problem, we ...

  5. UVaLive 6801 Sequence (计数DP)

    题意:给定一个序列,有 n 个数,只有01,然后你进行k次操作,把所有的1变成0,求有多种方法. 析:DP是很明显的,dp[i][j] 表示进行第 i 次操作,剩下 j 个1,然后操作就两种,把1变成 ...

  6. UVaLive 6697 Homework Evaluation (DP)

    题意:给出一个长字符串,再给一个短字符串,进行匹配,如果第i个恰好匹配,则 +8,:如果不匹配,可以给长或短字符串添加-,先后匹配,这样-3, 连续的长字符串添加-,需要减去一个4:也可不给添加-,则 ...

  7. UVaLive 7374 Racing Gems (DP,LIS)

    题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形) 现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石. ...

  8. UVALive 6947 Improvements(DP+树状数组)

    [题目链接] https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sho ...

  9. UVaLive 3490 Generator (KMP + DP + Gauss)

    题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度. 析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp ...

随机推荐

  1. bzoj千题计划238:bzoj3668: [Noi2014]起床困难综合症

    http://www.lydsy.com/JudgeOnline/problem.php?id=3668 这..一位一位的来就好了呀 #include<cstdio> #include&l ...

  2. Python学习笔记5-时间模块time/datetime

    import time time.sleep(2) #等待几秒 # 1.格式化好的时间 2018-1-14 16:42 # 2.时间戳 是从unix元年到现在所有的秒数 # 3.时间元组 #想时间戳和 ...

  3. Oozie 生成JMS消息并向 JMS Provider发送消息过程分析

    一,涉及到的工程 从官网下载源码,mvn 编译成 Eclipse工程文件:

  4. 关于Web安全的那些事(XSS攻击)

    概述 XSS攻击是Web攻击中最常见的攻击方法之一,它是通过对网页注入可执行代码且成功地被浏览器执行,达到攻击的目的,形成了一次有效XSS攻击,一旦攻击成功,它可以获取用户的联系人列表,然后向联系人发 ...

  5. unp学习笔记——Chapter1

    1.发现网络拓扑的几个重要的命令 (1).netstat -i 提供网络接口的信息.我们还指定-n 标志以输出数值地址,而不是试图把它们反向解析成名字.netstat -r 展示路由表. dzhwen ...

  6. C++的Enum hack

    从一个例子开始吧 class Game { private: static const int GameTurn = 10; int scores[GameTurn]; }; 对于支持类内初始化的C+ ...

  7. jsp前端验证(非常好用)

    1.在jsp页面中引入<script type="text/javascript" src="${ctxStatic}/js/valid.js">& ...

  8. 如何生成能在没有安装opencv库及vs2010环境的电脑上运行的exe文件

    项目基本算法已经完成,甲方需要一个可以运行的demo.目前,程序能在自己的电脑上正常运行.移植到其他win7系统上,运行失败. 寻找各种解决办法,baidu找到两个办法: 1.使用静态链接的方法,这种 ...

  9. BAT脚本加防火墙455端口

    @echo off mode con: cols=85 lines=30 :NSFOCUSXA title WannaCry勒索病毒安全加固工具 color 0A cls echo. echo. ec ...

  10. 初步认识mitmproxy(一)

    在windows机器上,经常用的最多的是fiddler工具,很强大,图形化界面,使用方便.简单:在mac上,Charles 类似fiddler工具,同样是易于操作的图形化界面,同样都是通过代理的方式实 ...