Punching Robot

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4928

Description

In this problem, you are given a grid map of N ×M (N rows and M

columns) where the rows are numbered 1. . . N from top to bottom,

and the columns are numbered 1. . . M from left to right. Your task

is to count in how many ways you can reach cell (N, M) from cell

(1, 1) given that you are only allowed to move right or downward

at any time, i.e. if your current location is at cell (r, c), then you

can only move to cell (r + 1, c) or (r, c + 1). However, we quickly

realized that this kind of problem could be too easy for you, thus,

not challenging. Therefore, we decided to put K punching robots

in the map. Each punching robot is able to punch any object which

lies in any of 3×3 cells centered at the robot (Figure 1). To simplify

the problem, you may assume that the punching areas of any robot

do not overlap.

Your (new) task is: count in how many ways you can reach cell (N, M) from cell (1, 1) without

being punched by any robot, given that you are only allowed to move right or downward at any time.

As the output can be very large, you need to modulo the output by 997. For example, consider the

following map of 4 x 10 with two punching robots at (3, 3) and (2, 8).

Figure 2.

In this example, there are 4 ways to reach (4, 10) from (1, 1) without being punched by any of the

robots. All those 4 paths only differ when they go from (1, 5) to (4, 6):

• . . . , (1, 5), (1, 6), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (2, 6), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (3, 6), (4, 6), . . .

• . . . , (1, 5), (2, 5), (3, 5), (4, 5), (4, 6),

Meanwhile, there is only one unique path from (1, 1) to (1, 5) and from (4, 6) to (4, 10).

Input

The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each case begins

with three integers: N, M, and K (2 ≤ N, M ≤ 1, 000, 000; 0 ≤ K ≤ 10) denoting the size of the map

and the number of punching robots respectively. The following K lines, each contains two integers: Ri

and Ci (1 < Ri < N; 1 < Ci < M) denoting the position of i-th robot (row and column respectively)

in the map. You are guaranteed that, for any two robots, the row difference or the column difference

will be at least 3, i.e. no two robots’ punching areas are overlapping. You are also guaranteed that cell

(1, 1) and cell (N, M) are not in punching areas of any robots.

Output

For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the answer

for that case modulo by 997.

Explanation for 2nd sample case:

The following figure represents the map for the 2nd sample

case.

As you can see, there is no way you can reach (3, 5) from (1,

  1. without being punched by the robot.

Sample Input

4

4 10 2

3 3

2 8

3 5 1

2 3

5 5 0

10 9 3

9 3

6 8

3 4

Sample Output

Case #1: 4

Case #2: 0

Case #3: 70

Case #4: 648

Hint

题意

给你个(n,m)的方格,里面有一些坏的3*3位置,问你从(1,1)到(n,m)的方案数是多少

题解:

我们把3*3的拆成9个坏点,那么这道题就和CF的某道题一样了

http://www.cnblogs.com/qscqesze/p/4669136.html

但是这道题的模数是997,所以取逆元的时候可能有问题,你需要把997单独拿出来讨论一下就好了。

代码

#include<bits/stdc++.h>
using namespace std;
#define maxn 3000005
#define mod 997
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cas=0;
struct Point
{
long long x,y;
}points[maxn];
bool cmp(Point a,Point b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
ll p=mod;
ll fac[maxn],num[maxn];
ll qpow(ll a,ll b)
{
ll ans=1;a%=mod;
for(ll i=b;i;i>>=1,a=a*a%mod)
if(i&1)ans=ans*a%mod;
return ans;
}
ll C(ll n,ll m)
{
if(m>n||m<0)return 0;
if(num[n]!=num[n-m]+num[m]) return 0;
ll s1=fac[n],s2=fac[n-m]*fac[m]%mod;
return s1*qpow(s2,mod-2)%mod;
}
ll f[maxn];
int main()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
{
if(i%997!=0)
fac[i]=fac[i-1]*i%mod,num[i]=num[i-1];
else
{
num[i]=num[i-1];
int tmp=i;
while(tmp%997==0)
num[i]++,tmp/=997;
fac[i]=fac[i-1]*tmp;
}
}
int t;scanf("%d",&t);
while(t--){
int n=read(),m=read(),k=read();
for(int i=1;i<=k;i++)
{
points[i*9-8].x=read();
points[i*9-8].y=read();
points[i*9-8].x-=1;
points[i*9-8].y-=1; points[i*9-7].x=points[i*9-8].x-1;
points[i*9-7].y=points[i*9-8].y-1; points[i*9-6].x=points[i*9-8].x;
points[i*9-6].y=points[i*9-8].y-1; points[i*9-5].x=points[i*9-8].x+1;
points[i*9-5].y=points[i*9-8].y-1; points[i*9-4].x=points[i*9-8].x-1;
points[i*9-4].y=points[i*9-8].y; points[i*9-3].x=points[i*9-8].x+1;
points[i*9-3].y=points[i*9-8].y; points[i*9-2].x=points[i*9-8].x-1;
points[i*9-2].y=points[i*9-8].y+1; points[i*9-1].x=points[i*9-8].x;
points[i*9-1].y=points[i*9-8].y+1; points[i*9].x=points[i*9-8].x+1;
points[i*9].y=points[i*9-8].y+1;
}
k*=9;
points[++k].x=n-1;
points[k].y=m-1;
sort(points+1,points+k+1,cmp);
for(int i=1;i<=k;i++)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
for(int j=1;j<i;j++)
{
if(points[j].y<=points[i].y)
{
f[i]+=(p-f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]%=p;
}
}
}
printf("Case #%d: %lld\n",++cas,f[k]%p);
}
}

UVALive 6916 Punching Robot dp的更多相关文章

  1. UVALive - 6916 Punching Robot Lucas+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...

  2. 【BZOJ1408】[Noi2002]Robot DP+数学

    [BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...

  3. UVALive - 6952 Cent Savings dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/116998 Cent Savings Time Limit: 3000MS 问题描述 To host a re ...

  4. UVALive - 6529 找规律+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/47664 Eleven Time Limit: 5000MS 问题描述 In this problem, we ...

  5. UVaLive 6801 Sequence (计数DP)

    题意:给定一个序列,有 n 个数,只有01,然后你进行k次操作,把所有的1变成0,求有多种方法. 析:DP是很明显的,dp[i][j] 表示进行第 i 次操作,剩下 j 个1,然后操作就两种,把1变成 ...

  6. UVaLive 6697 Homework Evaluation (DP)

    题意:给出一个长字符串,再给一个短字符串,进行匹配,如果第i个恰好匹配,则 +8,:如果不匹配,可以给长或短字符串添加-,先后匹配,这样-3, 连续的长字符串添加-,需要减去一个4:也可不给添加-,则 ...

  7. UVaLive 7374 Racing Gems (DP,LIS)

    题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形) 现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石. ...

  8. UVALive 6947 Improvements(DP+树状数组)

    [题目链接] https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sho ...

  9. UVaLive 3490 Generator (KMP + DP + Gauss)

    题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度. 析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp ...

随机推荐

  1. F. Ivan and Burgers(线性基,离线)

    题目链接:http://codeforces.com/contest/1100/problem/F 题目大意:首先输入n,代表当前有n个数,然后再输入m,代表m次询问,每一次询问是询问区间[l,r], ...

  2. Android Studio 新建drawable-hdpi、drawable-mdpi等

    在不同的模式“Project” / “Android”的文件夹中查看文件夹.如果文件夹丢失,您可以轻松添加它们. 1.在“res”文件夹上右键“New”->”Android Resource D ...

  3. nagios报警延迟的解决--flapping state

    这个问题是在测试中发现的.因为要在服务器上布置nagios用来监控oracle,可是发现手动shutdown数据库后能够很快报警,但是再startup后就不是很及时,有时会延迟很久.经过研究发现了这个 ...

  4. Ansible Tower系列 四(使用tower执行一个命令)【转】

    在主机清单页面中,选择一个主机清单,进入后,选择hosts里的主机 Paste_Image.png 点击 RUN COMMANDS MODULE 选择 commandARGUMENTS 填写 ifco ...

  5. Parameters.Add和Parameters.AddWithValue

    因为vs2013没有更新update 5所以Parameters.Add可以用Parameters.AddWithValue赋值无效 更新后可以. Parameters.AddWithValue的底层 ...

  6. stdole.dll

    迁移至win1064位后,发布提示stdole.dll错误,查找半天,是因为引用了office组件问题,将其注释掉.解决.因为此块代码无用,但是对有用的代码如何解决发布问题,未找到合适解决方法.

  7. contos 7创建阿里云镜像源

    今天在ESC上安装mariaDB,发现centOS 7默认的yum源上的mariaDB版本过低,然后又镜像到网易上,发现网易源上没有mariaDB,几经折腾才发现阿里镜像上mariaDB版本较新.更改 ...

  8. python3 之__str__

    当某个类定义了__str__方法是,打印该类的实例对象就是打印__str__方法return出来的数据 示例: class Cat: """定义了一个Cat类" ...

  9. JAVA 反射用法

    1.获得Class对象 Class<?>  classType  =  Class.forName() 可以通过传入一个全限定类名(包含包名)返回一个该类的Class类对象引用 . Cla ...

  10. KnockoutJs学习笔记(七)

    if binding与visible binding类似.不同之处在于,包含visible binding的元素会在DOM中一直保存,并且该元素相应的data-bind属性会一直保持,visible ...