Maximum Subarray LT53
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Idea 1: For all pairs of integers i and j satisfying 0 <= i <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far, take advange of:
sum of nums[i..j] = sum of nums[i..j-1] + nums[j]
the sum of all continuous subarray starting at i can be calculated in O(n), hence we have a quadratic algorithm.
Time complexity: O(n2)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int sz = nums.length;
int maxSumSoFar = Integer.MIN_VALUE; for(int i = 0; i < sz; ++i) {
int sumStartHere = 0;
for(int j = i; j < sz; ++j) {
sumStartHere += nums[j];
maxSumSoFar = Math.max(maxSumSoFar, sumStartHere);
}
}
return maxSumSoFar;
}
}
Idea 1.a: With the help of a cumulative sum array, cumarr[0...i], which can be computed in linear time, it allows the sum to be computed quickly,
sum[i..j] = cumarr[j] - cumarr[i-1].
Time complexity: O(n2)
Space complexity: O(n)
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int i = 0; i < sz; ++i) {
for(int j = i; j < sz; ++j) {
int previousSum = 0;
if(i > 0) {
previousSum = cumuSum[i-1];
}
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - previousSum);
}
} return maxSumSoFar;
}
}
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int j = 0; j < sz; ++j) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j]);
for(int i = 1; i <= j; ++i) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - cumuSum[i-1]);
}
} return maxSumSoFar;
}
}
Idea 2: divide and conquer. Divide into two subproblems, recusively find the maximum in subvectors(max[i..k], max[k..j]) and find the maximum of crossing subvectors(max[i..k..j]), return the max of max[i..k], max[k..j] and max[i..k..j].
Time complexity: O(nlgn)
Space complexity: O(lgn) the stack
class Solution {
private int maxSubArrayHelper(int[] nums, int l, int u) {
if(l >= u) return Integer.MIN_VALUE;
int mid = l + (u - l)/2; int leftMaxSum = nums[mid];
int sum = 0;
for(int left = mid; left >=l; --left) {
sum += nums[left];
leftMaxSum = Math.max(leftMaxSum, sum);
} int rightMaxSum = 0;
sum = 0;
for(int right = mid+1; right < u; ++right) {
sum += nums[right];
rightMaxSum = Math.max(rightMaxSum, sum);
} return Math.max(leftMaxSum + rightMaxSum,
Math.max(maxSubArrayHelper(nums, l, mid), maxSubArrayHelper(nums, mid+1, u)));
} public int maxSubArray(int[] nums) {
return maxSubArrayHelper(nums, 0, nums.length);
}
}
Idea 3: Extend the solution to the next element in the array. How can we extend a solution for nums[0...i-1] to nums[0..i].
The key is the max sum ended in each element, if extending to the next element,
maxHere(i) = Math.max( maxHere(i-1) + nums[i], nums[i])
maxSoFar = Math.max(maxSoFar, maxHere)
Time compleixty: O(n)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int maxHere = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
maxHere = Math.max(maxHere, 0) + num;
maxSoFar = Math.max(maxSoFar, maxHere);
} return maxSoFar;
}
}
Idea 3.a: Use the cumulative sum,
maxHere = cumuSum(i) - minCumuSum
cumuSum(i) = cumuSum(i-1) + nums[i]
maxSoFar = Math.max(maxSoFar, maxHere) = Math.max(maxSoFar, cumuSum - minCumuSum)
Time compleixty: O(n)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int min = 0;
int cumuSum = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
cumuSum += num;
maxSoFar = Math.max(maxSoFar, cumuSum - min);
min = Math.min(min, cumuSum);
} return maxSoFar;
}
}
Maximum Subarray LT53的更多相关文章
- [LintCode] Maximum Subarray 最大子数组
Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...
- 【leetcode】Maximum Subarray (53)
1. Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...
- 算法:寻找maximum subarray
<算法导论>一书中演示分治算法的第二个例子,第一个例子是递归排序,较为简单.寻找maximum subarray稍微复杂点. 题目是这样的:给定序列x = [1, -4, 4, 4, 5, ...
- LEETCODE —— Maximum Subarray [一维DP]
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 【leetcode】Maximum Subarray
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- maximum subarray problem
In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...
- (转)Maximum subarray problem--Kadane’s Algorithm
转自:http://kartikkukreja.wordpress.com/2013/06/17/kadanes-algorithm/ 本来打算自己写的,后来看到上述链接的博客已经说得很清楚了,就不重 ...
- 3月7日 Maximum Subarray
间隔2天,继续开始写LeetCodeOj. 原题: Maximum Subarray 其实这题很早就看了,也知道怎么做,在<编程珠玑>中有提到,求最大连续子序列,其实只需要O(n)的复杂度 ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
随机推荐
- 理解JVM2 栈内存,方法区,堆内存
堆,方法区,栈的关系 分配最大堆内存-Xmx32m class SimpleHeap(val id: Int){ fun show() = println("My id is $id&quo ...
- 加载 AssetBundle 的四种方法
[加载 AssetBundle 的四种方法] 1.AssetBundle.LoadFromMemoryAsync(byte[] binary, uint crc = 0); 返回AssetBundle ...
- ubuntu下搭建node server的几个坑
[ubuntu下搭建node server的几个坑] 1.环境变量 process.env.PORT需要使用 export PORT=80设置 windows下是set PORT=80 2.命令连结 ...
- Java 面向切面 AOP
参考: :http://www.blogjava.net/supercrsky/articles/174368.html AOP: Aspect Oriented Programming 即面向切面编 ...
- django1.10使用本地静态文件
django1.10使用本地静态文件方法 本文介绍的静态文件使用,是指启动web站点后,访问静态资源的用法,实际静态资源地址就是一个个的url 如果没有启动web站点,只是本地调试html页面,那直接 ...
- Struts1框架学习笔记
类实现DispatchAction 类似于ActionServlet ActionServlet 来自于 org.apache.struts.action 包,它继承自 HttpServlet, ...
- 在timer的时候突然改变影片简介,先前的不暂停
import flash.display.MovieClip; import flash.utils.Timer; import flash.events.TimerEvent; var hinder ...
- pta l2-18(多项式A除以B)
题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805060372905984 题意:给定两个多项式,求出其做除法 ...
- 【转】iOS 自动化性能采集
前言 对于iOS总体生态是比较封闭的,相比Android没有像adb这种可以查看内存.cpu的命令.在日常做性能测试,需要借助xcode中instruments查看内存.cpu等数据. 但是借助i ...
- Python+Selenium学习--上传文件
场景 文件上传操作也比较常见功能之一,上传功能操作webdriver 并没有提供对应的方法,关键上传文件的思路.上传过程一般要打开一个系统的window 窗口,从窗口选择本地文件添加.所以,一般会卡在 ...