Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Idea 1: For all pairs of integers i and j satisfying 0 <= i  <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far, take advange of:

  sum of nums[i..j] = sum of nums[i..j-1] + nums[j]

the sum of all continuous subarray starting at i can be calculated in O(n), hence we have a quadratic algorithm.

Time complexity: O(n2)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int sz = nums.length;
int maxSumSoFar = Integer.MIN_VALUE; for(int i = 0; i < sz; ++i) {
int sumStartHere = 0;
for(int j = i; j < sz; ++j) {
sumStartHere += nums[j];
maxSumSoFar = Math.max(maxSumSoFar, sumStartHere);
}
}
return maxSumSoFar;
}
}

Idea 1.a:  With the help of a cumulative sum array, cumarr[0...i], which can be computed in linear time,  it allows the sum to be computed quickly,

sum[i..j] = cumarr[j] - cumarr[i-1].

Time complexity: O(n2)

Space complexity: O(n)

class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int i = 0; i < sz; ++i) {
for(int j = i; j < sz; ++j) {
int previousSum = 0;
if(i > 0) {
previousSum = cumuSum[i-1];
}
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - previousSum);
}
} return maxSumSoFar;
}
}
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int j = 0; j < sz; ++j) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j]);
for(int i = 1; i <= j; ++i) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - cumuSum[i-1]);
}
} return maxSumSoFar;
}
}

Idea 2: divide and conquer. Divide into two subproblems, recusively find the maximum in subvectors(max[i..k], max[k..j]) and find the maximum of crossing subvectors(max[i..k..j]), return the max of max[i..k], max[k..j] and max[i..k..j].

Time complexity: O(nlgn)

Space complexity: O(lgn) the stack

class Solution {
private int maxSubArrayHelper(int[] nums, int l, int u) {
if(l >= u) return Integer.MIN_VALUE;
int mid = l + (u - l)/2; int leftMaxSum = nums[mid];
int sum = 0;
for(int left = mid; left >=l; --left) {
sum += nums[left];
leftMaxSum = Math.max(leftMaxSum, sum);
} int rightMaxSum = 0;
sum = 0;
for(int right = mid+1; right < u; ++right) {
sum += nums[right];
rightMaxSum = Math.max(rightMaxSum, sum);
} return Math.max(leftMaxSum + rightMaxSum,
Math.max(maxSubArrayHelper(nums, l, mid), maxSubArrayHelper(nums, mid+1, u)));
} public int maxSubArray(int[] nums) {
return maxSubArrayHelper(nums, 0, nums.length);
}
}

Idea 3: Extend the solution to the next element in the array. How can we extend a solution for nums[0...i-1] to nums[0..i].

The key is the max sum ended in each element, if extending to the next element,

maxHere(i) = Math.max( maxHere(i-1) + nums[i], nums[i])

maxSoFar = Math.max(maxSoFar, maxHere)

Time compleixty: O(n)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int maxHere = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
maxHere = Math.max(maxHere, 0) + num;
maxSoFar = Math.max(maxSoFar, maxHere);
} return maxSoFar;
}
}

Idea 3.a: Use the cumulative sum,

maxHere = cumuSum(i) - minCumuSum

cumuSum(i) = cumuSum(i-1) + nums[i]

maxSoFar = Math.max(maxSoFar, maxHere) = Math.max(maxSoFar, cumuSum - minCumuSum)

Time compleixty: O(n)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int min = 0;
int cumuSum = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
cumuSum += num;
maxSoFar = Math.max(maxSoFar, cumuSum - min);
min = Math.min(min, cumuSum);
} return maxSoFar;
}
}

Maximum Subarray LT53的更多相关文章

  1. [LintCode] Maximum Subarray 最大子数组

    Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...

  2. 【leetcode】Maximum Subarray (53)

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  3. 算法:寻找maximum subarray

    <算法导论>一书中演示分治算法的第二个例子,第一个例子是递归排序,较为简单.寻找maximum subarray稍微复杂点. 题目是这样的:给定序列x = [1, -4, 4, 4, 5, ...

  4. LEETCODE —— Maximum Subarray [一维DP]

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  5. 【leetcode】Maximum Subarray

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  6. maximum subarray problem

    In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...

  7. (转)Maximum subarray problem--Kadane’s Algorithm

    转自:http://kartikkukreja.wordpress.com/2013/06/17/kadanes-algorithm/ 本来打算自己写的,后来看到上述链接的博客已经说得很清楚了,就不重 ...

  8. 3月7日 Maximum Subarray

    间隔2天,继续开始写LeetCodeOj. 原题: Maximum Subarray 其实这题很早就看了,也知道怎么做,在<编程珠玑>中有提到,求最大连续子序列,其实只需要O(n)的复杂度 ...

  9. LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关

    Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...

随机推荐

  1. mysql5.7.10开启慢查询

    MySql提供慢SQL日志的功能,能够记录下响应时间超过一定阈值的SQL查询,以便于我们定位糟糕的查询语句. 首先,查询当前mysql数据库是否开启了慢查询日志功能: show VARIABLES l ...

  2. java分解质因数,具体程序分析和代码

    题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. 将一个正整数分解质因数分析:对n进行分解质因数,找到最小的质数k如果这个质数恰好等于n则说明分解质因数过程已经结束,打印输出 ...

  3. 自定义sql server 聚合涵数

    using System; using System.Data; using System.Data.SqlClient; using System.Data.SqlTypes; using Micr ...

  4. easymock单元测试跟踪工具

    EasyMock can save a lot of legwork and make unit tests a lot faster to write. builder.com Java E-New ...

  5. ELK 日志学习

    一.Elasticsearch 安装(所有的版本均使用5.5.0 ,且版需要相同 logstash \ kibana \ filebeat ) 官网下载地址:https://www.elastic.c ...

  6. 启动Tomcat的小细节--MyEclipse

    1.先停掉Tomcat 2.然后再Redeploy项目 3.然后再启动Tomcat. 这样的好处是 代码彻底编译

  7. defer和async的详细区别

    看过javascript高级程序设计的人,在javascript高级程序设计里,应该看到了介绍了有关defer和async的区别,可是比较浅显,而且也说得不是很清楚.下面我们来通过图片来详细了解下df ...

  8. pandas_1

    大熊猫10分钟 这是对熊猫的简短介绍,主要面向新用户.您可以在Cookbook中看到更复杂的食谱. 通常,我们导入如下: In [1]: import numpy as np In [2]: impo ...

  9. pd.concat()命令

    这个生成dataframe函数还是蛮有意思的.

  10. Linux sudo用法与配置

    Linux环境:CentOS 6.7 结构说明 可以通过编辑文件/etc/sudoers来配置,通常使用visudo命令来进行修改,因为如果你修改的格式不符合它会进行提示.接下来就通过一个格式来了解它 ...