Maximum Subarray LT53
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Idea 1: For all pairs of integers i and j satisfying 0 <= i <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far, take advange of:
sum of nums[i..j] = sum of nums[i..j-1] + nums[j]
the sum of all continuous subarray starting at i can be calculated in O(n), hence we have a quadratic algorithm.
Time complexity: O(n2)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int sz = nums.length;
int maxSumSoFar = Integer.MIN_VALUE; for(int i = 0; i < sz; ++i) {
int sumStartHere = 0;
for(int j = i; j < sz; ++j) {
sumStartHere += nums[j];
maxSumSoFar = Math.max(maxSumSoFar, sumStartHere);
}
}
return maxSumSoFar;
}
}
Idea 1.a: With the help of a cumulative sum array, cumarr[0...i], which can be computed in linear time, it allows the sum to be computed quickly,
sum[i..j] = cumarr[j] - cumarr[i-1].
Time complexity: O(n2)
Space complexity: O(n)
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int i = 0; i < sz; ++i) {
for(int j = i; j < sz; ++j) {
int previousSum = 0;
if(i > 0) {
previousSum = cumuSum[i-1];
}
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - previousSum);
}
} return maxSumSoFar;
}
}
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int j = 0; j < sz; ++j) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j]);
for(int i = 1; i <= j; ++i) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - cumuSum[i-1]);
}
} return maxSumSoFar;
}
}
Idea 2: divide and conquer. Divide into two subproblems, recusively find the maximum in subvectors(max[i..k], max[k..j]) and find the maximum of crossing subvectors(max[i..k..j]), return the max of max[i..k], max[k..j] and max[i..k..j].
Time complexity: O(nlgn)
Space complexity: O(lgn) the stack
class Solution {
private int maxSubArrayHelper(int[] nums, int l, int u) {
if(l >= u) return Integer.MIN_VALUE;
int mid = l + (u - l)/2; int leftMaxSum = nums[mid];
int sum = 0;
for(int left = mid; left >=l; --left) {
sum += nums[left];
leftMaxSum = Math.max(leftMaxSum, sum);
} int rightMaxSum = 0;
sum = 0;
for(int right = mid+1; right < u; ++right) {
sum += nums[right];
rightMaxSum = Math.max(rightMaxSum, sum);
} return Math.max(leftMaxSum + rightMaxSum,
Math.max(maxSubArrayHelper(nums, l, mid), maxSubArrayHelper(nums, mid+1, u)));
} public int maxSubArray(int[] nums) {
return maxSubArrayHelper(nums, 0, nums.length);
}
}
Idea 3: Extend the solution to the next element in the array. How can we extend a solution for nums[0...i-1] to nums[0..i].
The key is the max sum ended in each element, if extending to the next element,
maxHere(i) = Math.max( maxHere(i-1) + nums[i], nums[i])
maxSoFar = Math.max(maxSoFar, maxHere)
Time compleixty: O(n)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int maxHere = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
maxHere = Math.max(maxHere, 0) + num;
maxSoFar = Math.max(maxSoFar, maxHere);
} return maxSoFar;
}
}
Idea 3.a: Use the cumulative sum,
maxHere = cumuSum(i) - minCumuSum
cumuSum(i) = cumuSum(i-1) + nums[i]
maxSoFar = Math.max(maxSoFar, maxHere) = Math.max(maxSoFar, cumuSum - minCumuSum)
Time compleixty: O(n)
Space complexity: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int min = 0;
int cumuSum = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
cumuSum += num;
maxSoFar = Math.max(maxSoFar, cumuSum - min);
min = Math.min(min, cumuSum);
} return maxSoFar;
}
}
Maximum Subarray LT53的更多相关文章
- [LintCode] Maximum Subarray 最大子数组
Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...
- 【leetcode】Maximum Subarray (53)
1. Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...
- 算法:寻找maximum subarray
<算法导论>一书中演示分治算法的第二个例子,第一个例子是递归排序,较为简单.寻找maximum subarray稍微复杂点. 题目是这样的:给定序列x = [1, -4, 4, 4, 5, ...
- LEETCODE —— Maximum Subarray [一维DP]
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 【leetcode】Maximum Subarray
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- maximum subarray problem
In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...
- (转)Maximum subarray problem--Kadane’s Algorithm
转自:http://kartikkukreja.wordpress.com/2013/06/17/kadanes-algorithm/ 本来打算自己写的,后来看到上述链接的博客已经说得很清楚了,就不重 ...
- 3月7日 Maximum Subarray
间隔2天,继续开始写LeetCodeOj. 原题: Maximum Subarray 其实这题很早就看了,也知道怎么做,在<编程珠玑>中有提到,求最大连续子序列,其实只需要O(n)的复杂度 ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
随机推荐
- mysql5.7.10开启慢查询
MySql提供慢SQL日志的功能,能够记录下响应时间超过一定阈值的SQL查询,以便于我们定位糟糕的查询语句. 首先,查询当前mysql数据库是否开启了慢查询日志功能: show VARIABLES l ...
- java分解质因数,具体程序分析和代码
题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. 将一个正整数分解质因数分析:对n进行分解质因数,找到最小的质数k如果这个质数恰好等于n则说明分解质因数过程已经结束,打印输出 ...
- 自定义sql server 聚合涵数
using System; using System.Data; using System.Data.SqlClient; using System.Data.SqlTypes; using Micr ...
- easymock单元测试跟踪工具
EasyMock can save a lot of legwork and make unit tests a lot faster to write. builder.com Java E-New ...
- ELK 日志学习
一.Elasticsearch 安装(所有的版本均使用5.5.0 ,且版需要相同 logstash \ kibana \ filebeat ) 官网下载地址:https://www.elastic.c ...
- 启动Tomcat的小细节--MyEclipse
1.先停掉Tomcat 2.然后再Redeploy项目 3.然后再启动Tomcat. 这样的好处是 代码彻底编译
- defer和async的详细区别
看过javascript高级程序设计的人,在javascript高级程序设计里,应该看到了介绍了有关defer和async的区别,可是比较浅显,而且也说得不是很清楚.下面我们来通过图片来详细了解下df ...
- pandas_1
大熊猫10分钟 这是对熊猫的简短介绍,主要面向新用户.您可以在Cookbook中看到更复杂的食谱. 通常,我们导入如下: In [1]: import numpy as np In [2]: impo ...
- pd.concat()命令
这个生成dataframe函数还是蛮有意思的.
- Linux sudo用法与配置
Linux环境:CentOS 6.7 结构说明 可以通过编辑文件/etc/sudoers来配置,通常使用visudo命令来进行修改,因为如果你修改的格式不符合它会进行提示.接下来就通过一个格式来了解它 ...