【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)
1005: [HNOI2008]明明的烦恼
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 4981 Solved: 1941Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
3
1
-1
-1Sample Output
2HINT
两棵树分别为1-2-3;1-3-2
Source
【分析】
先特判无解的情况。
假设$sum=\sum(d[i]-1)|[d[i]!=-1]$
$ss=\sum 1 [d[i]!=-1]$
则$Ans=C_{n-2}^{sum}*\dfrac{sum!}{\Pi(d[i]-1)!}*(n-ss)^{n-2-sum}$
即$Ans=\dfrac{(n-2)!}{(n-2-sum)!*\Pi(d[i]-1)!}*(n-ss)^{n-2-sum}$
这些数值都不会超过n的,先手动消因子,然后Ans用高精度,就是高精乘单精。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1010
#define mod 10000 int cnt[Maxn],d[Maxn]; struct hugeint
{
int w[Maxn],l;
hugeint() {memset(w,,sizeof(w));l=;}
friend hugeint operator * (hugeint x,int y)
{
for(int i=;i<=x.l;i++) x.w[i]*=y;
for(int i=;i<=x.l;i++) x.w[i+]+=x.w[i]/mod,x.w[i]%=mod;
while(x.w[x.l+]!=) x.w[x.l+]+=x.w[x.l+]/mod,x.w[++x.l]%=mod;
while(x.w[x.l]==&&x.l>) x.l--;
return x;
}
}; void cal(int x,int y)
{
for(int i=;i<=x*x;i++) if(x%i==)
{
while(x%i==) cnt[i]+=y,x/=i;
}
if(x!=) cnt[x]+=y;
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&d[i]);
if(n==&&d[]>) printf("0\n");
else
{
int sum=,ss=;
for(int i=;i<=n;i++) if(d[i]!=-) sum+=d[i]-,ss++;
else if(d[i]==||d[i]>=n) {printf("0\n");return ;}
if(sum>n-) printf("0\n");
else
{
// for(int i=1;i<=n;i++) if(d[i]!=-1) d[i]--;
for(int i=;i<=n;i++) cnt[i]=;
for(int i=;i<=n-;i++) cal(i,);
for(int i=;i<=n--sum;i++) cal(i,-);
for(int i=;i<=n;i++) if(d[i]!=-)
{
for(int j=;j<=d[i]-;j++) cal(j,-);
}
cal(n-ss,n--sum);
hugeint ans;ans.w[]=;
for(int i=;i<=n;i++) while(cnt[i]--) ans=ans*i;
printf("%d",ans.w[ans.l]);
for(int i=ans.l-;i>=;i--) printf("%04d",ans.w[i]);printf("\n");
}
}
return ;
}
2017-04-25 15:36:48
【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)的更多相关文章
- BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)
题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...
- 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度
题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
- 【BZOJ 1005】[HNOI2008]明明的烦恼(暴力化简法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] 中文题 [题解] 一棵节点上标有序号的树会和一个prufer数列唯一对 ...
- BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)
题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...
- 【BZOJ 1005】[HNOI2008]明明的烦恼(化简的另一种方法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] [题解] 题目和题解在上一篇; 这里 对 [(m^(n-2-tot)) ...
- 【BZOJ 1005】[HNOI2008]明明的烦恼
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...
随机推荐
- Hadoop基础-常见异常剖析之防坑小技巧
Hadoop基础-常见异常剖析之防坑小技巧 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- Spark记录-Scala数组
Scala提供了一种数据结构叫作数组,数组是一种存储了相同类型元素的固定大小顺序集合.数组用于存储数据集合,但将数组视为相同类型变量的集合通常更为有用. 可以声明一个数组变量,例如:numbers,使 ...
- bzoj千题计划175:bzoj1303: [CQOI2009]中位数图
http://www.lydsy.com/JudgeOnline/problem.php?id=1303 令c[i]表示前i个数中,比d大的数与比d小的数的差,那么如果c[l]=c[r],则[l+1, ...
- Guava HashMultiMap(MultiMap)反转映射
(一)MultiMap 多重map,一个key可以对应多个值(多个值放在一个list中),可用于分组 举例: Multimap<String, Integer> map = HashMul ...
- 20155306 2016-2017-2 《Java程序设计》第八周学习总结
20155306 2016-2017-2 <Java程序设计>第八周学习总结 教材学习内容总结 第十五章 通用API 15.1 日志 java.util.loggging包提供了日志功能相 ...
- LeetCode-Valid Number - 有限状态机
判断合法数字,之前好像在哪里看到过这题, 记得当时还写了好久,反正各种改, 今天看到了大神的解法(https://github.com/fuwutu/LeetCode/blob/master/Vali ...
- Java给图片和PDF文件添加水印(图片水印和文字水印)
有时候我们看到的图片或者PDF文件会自动加上水印.分为文字水印和图片水印. ----------------------------图片水印---------------------------- 1 ...
- 标准linu休眠和唤醒机制分析(四)【转】
转自:http://blog.csdn.net/lizhiguo0532/article/details/6453552 suspend第三.四.五阶段:platform.processor.core ...
- NEERC Southern Subregional 2012
NEERC Southern Subregional 2012 Problem B. Chess Championship 题目描述:有两个序列\(a, b\),两个序列都有\(n\)个数,并且这\( ...
- Petrozavodsk WinterTraining 2015
PetrozavodskWinterTraining2015 A - Three Servers 题目描述:有\(n\)个数,将这\(n\)个数分成\(3\)堆,使得\(3\)堆中和的最大值减最小值最 ...