link

题意:

给你一个长为m的序列$b_i$,定义两个字符串a,b相同当前仅当a执行以下操作后能变成b:($\rm{prefix}(x,y)$及$\rm{suffix}(x,y)$定义为串x的前/后y位组成的串)

  • 选择一个$k=b_i$;
  • 将$s1=\rm{prefix}(a,k)$和$s2=\rm{suffix}(a,k)$取出;
  • 将s2翻转后接到头部,s1翻转后接到头部;
  • 退出或重复上述操作。

求长为n,字符集大小为x的不相同串个数。

$m\leq2\times10^5,n,x\leq10^9.$

题解:

不太懂题解那个神奇的组合做法。。问到一种polya推法,重新复习了一遍polya定理。

polya定理:在一个置换群F中用t种颜色染色,第i个置换有$k_i$个循环,本质不同的染色数为

$$\begin{equation}\frac{\sum_{i=0}^{|F|}t^{k_i}}{|F|}\end{equation}$$

那么这题里的翻转就是F,可以看做是一些交换操作,如选择$k=b_1$就是交换$(1,n)(2,n-1)...(b_1,n-b_1+1)$这些数对。不难发现一个置换交换了x对数对,就有n-x个循环。

我们可以对b做差分记为c,这样每一个$c_i$对应的是一些互不相交的交换操作,同时通过$2^m$种组合可以组合出任意一种对应原序列b的方案,也就是c和b是等价的。

记$cnt_i$为$n-c_i$也就是$c_i$对应置换的循环个数,由于互不相交,任意一些$c_i$组合后的循环个数可以直接相加。所以最终答案的式子应该是:

$$\begin{equation}\frac{1}{|F|}\sum_{s\subseteq c}x^{n-\sum s}\end{equation}$$

提出$x^n$,此题有$|F|=2^m$。那个枚举c的子集求$x^{\sum s}$部分,用生成函数的思想转化,写成$\prod_{s\in c} (1+x^s)$即可。这样就可以直接算了。

由于指数上有$n-\sum s$,相当于要除法,其实可以提一个$x^{\sum c}$出来,那么后面的指数就变正了。

复杂度一个log。

code:

 #include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long
using namespace std;
const int N=2e5+,mod=,inv2=(mod+)/;
int n,m,x,a[N],ans;
int ksm(int x,int y){
int s=;
for (;y;y>>=,x=(ll)x*x%mod) if (y&) s=(ll)s*x%mod;
return s;
}
int main(){
scanf("%d%d%d",&n,&m,&x);
rep (i,,m) scanf("%d",&a[i]);
ans=ksm(x,n-a[m]);
for (int i=m;i;i--) a[i]-=a[i-],ans=(ll)ans*inv2%mod;
rep (i,,m) ans=(ll)ans*(+ksm(x,a[i]))%mod;
printf("%d\n",ans);
return ;
}

CF1065E Side Transmutations的更多相关文章

  1. 题解-CF1065E Side Transmutations

    CF1065E Side Transmutations \(n\) 和 \(m\) 和 \(k\) 和序列 \(b_i(1\le i\le m,1\le b_i\le b_{i+1}\le \frac ...

  2. CF 1065 E. Side Transmutations

    E. Side Transmutations http://codeforces.com/contest/1065/problem/E 题意: 长度为n的字符串,字符集为A,问多少不同的字符串.两个字 ...

  3. Educational Codeforces Round 52 (Rated for Div. 2) E. Side Transmutations

    http://codeforces.com/contest/1065/problem/E 数学推导题 #include <bits/stdc++.h> using namespace st ...

  4. CodeForces 1065E. Side Transmutations 计数

    昨天不该早点走的.... 首先操作限制实际上是一个回文限制 每个$b[i] - b[i - 1]$互不干扰,不妨设这个串关于中心点对称的这么一对区间的串分别为$(S_1, S_2)$ 题目的限制相当与 ...

  5. 组合数学——cf1065E

    从两端到中间分段,然后累乘即可 #include<bits/stdc++.h> using namespace std; #define mod 998244353 #define max ...

  6. Educational Codeforces Round 52 (Rated for Div. 2)

    题目链接 A. Vasya and Chocolate 题意 已知钱,价格,赠送规则求最多获得巧克力数 思路常规算即可 代码 #include <bits/stdc++.h> #defin ...

  7. [CodeForces]Educational Round 52

    幸好我没有打这场,我VP的时候在C题就卡死了,我果然还是太菜了. A Vasya and Chocolate 题意:一个巧克力\(c\)元,买\(a\)赠\(b\),一共有\(n\)元,问能买几个巧克 ...

  8. Codeforces Edu Round 52 A-E

    A. Vasya and Chocolate 模拟题.数据会爆\(int\),要开\(long\) \(long\) #include <iostream> #include <cs ...

随机推荐

  1. Windows环境下Qwt安装和使用

    之前安装过,现在记录下关键步骤,方便后面使用和复习吧. 环境:win10   Qt5.9  Qt Creator 4.3 参考:https://blog.csdn.net/linuxarmsummar ...

  2. 快速了解yuv4:4:4 yuv4:2:2 yuv 4:1:1 yuv 4:2:0四种YUV格式区别

    四种YUV格式区别如下: 1.YUV  4:4:4抽样方式: Y: Y0 Y1 Y2 Y3 U: U0 U1 U2 U3 V: V0 V1 V2 V3 2.YUV   4:2:2抽样方式: Y   : ...

  3. SQL记录-PLSQL过程

    PL/SQL过程   子程序是一个程序单元/模块执行特定的任务.这些子程序被组合以形成更大的程序.这基本上是被称为“模块化设计”.子程序可以调用由另一个子程序或程序被称为调用程序. 子程序可以创建: ...

  4. 纯CSS实现表单验证

    ladies and 乡亲们,表单验证你在做吗?客户端or服务器端,javascript or jquery,动手写 or 使用插件,今天我们来探索下使用纯css实现表单验证,借以学习css sele ...

  5. SpringBoot 读取配置文件及profiles切换配置文件

    读取核心配置文件 核心配置文件是指在resources根目录下的application.properties或application.yml配置文件,读取这两个配置文件的方法有两种,都比较简单. 先创 ...

  6. div中添加滚动条

    <div style="position:absolute; height:400px; overflow:auto"></div>div 设置滚动条显示: ...

  7. 记webpack下引入vue的方法(非.vue文件方式)

    直接script引入下载静态的vue.js文件则最后用copy-webpack-plugin复制到一样的目录即可 使用npm安装的vue无法直接用 import vue from "vue& ...

  8. 使用 scm-manager 搭建 git/svn 代码管理仓库(二)

    主要介绍scm的配置. 1.配置为在Windows服务中启动scm-manager的启动方式有多种,可以在DOS(即命令行CMD模式)中启动,也可以在Windows服务中启动. 下面我们采用Windo ...

  9. mybatis多对多关联查询——(十)

    1.需求 查询用户及用户购买商品信息. 2     sql语句 查询主表是:用户表 关联表:由于用户和商品没有直接关联,通过订单和订单明细进行关联,所以关联表: orders.orderdetail. ...

  10. iOS 中 h5 页面 iframe 调用高度自扩展问题及解决

    开发需求需要在 h5 中用 iframe 中调用一个其他公司开发的 html 页面. 简单的插入 <iframe /> 并设置宽高后,发现在 Android 手机浏览器上打开可以正常运行, ...