【366】通过 python 求解 QP 问题
参考: 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题
参考: Quadratic Programming - Official website
步骤如下:
- 首先安装 cvxopt library
- 将问题化成标准 QP 问题, 得到 P/q/G/h/A/b
- 直接利用自带函数求解即可
cvxopt.solvers.qp(P, q[, G, h[, A, b[, solver[, initvals]]]])
1、二次规划问题的标准形式

上式中,x为所要求解的列向量,xT表示x的转置
接下来,按步骤对上式进行相关说明:
上式表明,任何二次规划问题都可以转化为上式的结构,事实上用cvxopt的第一步就是将实际的二次规划问题转换为上式的结构,写出对应的
P、q、G、h、A、b目标函数若为求
max,可以通过乘以−1,将最大化问题转换为最小化问题Gx≤b表示的是所有的不等式约束,同样,若存在诸如x≥0的限制条件,也可以通过乘以−1转换为≤的形式Ax=b表示所有的等式约束
2、以一个标准的例子进行过程说明

例子中,需要求解的是x,y,我们可以把它写成向量的形式,同时,也需要将限制条件按照上述标准形式进行调整,用矩阵形式表示,如下所示:

- 如上所示,目标函数和限制条件均转化成了二次规划的标准形式,这是第一步,也是最难的一步,接下来的事情就简单了
- 对比上式和标准形式,不难得出:

接下来就是几行简单的代码,目的是告诉计算机上面的参数具体是什么
from cvxopt import solvers, matrix
P = matrix([[1.0,0.0],[0.0,0.0]]) # matrix里区分int和double,所以数字后面都需要加小数点
q = matrix([3.0,4.0])
G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])
h = matrix([0.0,0.0,-15.0,100.0,80.0]) sol = solvers.qp(P,q,G,h) # 调用优化函数solvers.qp求解
print sol['x'] # 打印结果,sol里面还有很多其他属性,读者可以自行了解 pcost dcost gap pres dres
0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01
1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00
2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01
4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01
5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16
6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16
7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16
8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]
- 看了上面的代码,是不是觉得很简单。因为难点不在代码,而是在于将实际优化问题转化为标准形式的过程
- 在上面的例子中,并没有出现等号,当出现等式约束时,过程一样,找到
A,b,然后运行代码sol = solvers.qp(P,q,G,h,A,b)即可求解
扩展:上述定义各个矩阵参数用的是最直接的方式,其实也可以结合Numpy来定义上述矩阵
from cvxopt import solvers, matrix
import numpy as np P = matrix(np.diag([1.0,0])) # 对于一些特殊矩阵,用numpy创建会方便很多(在本例中可能感受不大)
q = matrix(np.array([3.0,4]))
G = matrix(np.array([[-1.0,0],[0,-1],[-1,-3],[2,5],[3,4]]))
h = matrix(np.array([0.0,0,-15,100,80]))
sol = solvers.qp(P,q,G,h) pcost dcost gap pres dres
0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01
1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00
2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01
4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01
5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16
6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16
7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16
8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16
Optimal solution found.
【366】通过 python 求解 QP 问题的更多相关文章
- 利用python求解物理学中的双弹簧质能系统详解
利用python求解物理学中的双弹簧质能系统详解 本文主要给大家介绍了关于利用python求解物理学中双弹簧质能系统的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 物理的 ...
- python 求解线性方程组
Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - ...
- Python求解线性规划——PuLP使用教程
简洁是智慧的灵魂,冗长是肤浅的藻饰.--莎士比亚<哈姆雷特> 1 PuLP 库的安装 如果您使用的是 Anaconda[1] 的话(事实上我也更推荐这样做),需要先激活你想要安装的虚拟环境 ...
- Python求解进制问题(阿里巴巴2015笔试题)
问题描述:用十进制计算30的阶乘,然后把结果转换成三进制表示,那么该进制表示的结果末尾会有多少个连续0?解析:作为笔试题的话,要想按照题意先把阶乘结果计算出来再转换成三进制最后再数0的个数,时间肯定来 ...
- Python求解登楼梯问题(京东2016笔试题)
问题:假设一段楼梯共15个台阶,小明一步最多能上3个台阶,那么小明上这段楼梯一共有多少种方法? 解析:从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一 ...
- Python求解数组重新组合求最小值(优酷)
题目描述:题目:含有n个元素的整型数组,将这个n个元素重新组合,求出最小的数,如(321,3,32,) 最小数为321323 题目分析: 将数组中所有元素填充到个数相等,填充的数字为最后一位的数字,如 ...
- Python求解啤酒问题(携程2016笔试题)
问题描述:一位酒商共有5桶葡萄酒和1桶啤酒,6个桶的容量分别为30升.32升.36升.38升.40升和62升,并且只卖整桶酒,不零卖.第一位顾客买走了2整桶葡萄酒,第二位顾客买走的葡萄酒是第一位顾客的 ...
- 华为2018软件岗笔试题之第一题python求解分享
闲来无事,突然看到博客园首页上有人写了篇了华为2018软件岗笔试题解题思路和源代码分享.看了下题目,感觉第一题能做出来,就想着用刚刚学的python试着写一下,花费的时间有点长~~,看来又好长时间没练 ...
- 牛客网 python 求解立方根
•计算一个数字的立方根,不使用库函数 详细描述: •接口说明 原型: public static double getCubeRoot(double input) 输入:double 待求解参数 返回 ...
随机推荐
- rtpproxy 配置
1.下载rtpproxy并安装 cd /home/hi 下载rtpproxy最新版,比如rtpproxy-2.1.0.tar.gz tar –xzvf rtpproxy-2.1.0.tar.gz cd ...
- classpath路径配置
在很多Apache的框架中,经常遇见配置classpath情况,但是都没有认真研究过classpath,下面是对classpath的解析. classpath: 是指编译过后的的classes目录 对 ...
- int main(int argc,char* argv[])浅析
int main(int argc,char* argv[])浅析 argc : 指输入参数个数,默认值1,就是执行程序名称 argv[] : 输入参数数组指针 举个栗子: 1. 编写一个argc.c ...
- CNN卷积层:ReLU函数
卷积层的非线性部分 一.ReLU定义 ReLU:全称 Rectified Linear Units)激活函数 定义 def relu(x): return x if x >0 else 0 #S ...
- Unity读取Android SDcard文件
一.添加权限 权限添加 :Player settings -- Other settings -- write permission的设置 Sdcard.这个是在Unity编辑器里打包的情况. 如果导 ...
- C# webbrowser全掌握(二)
全篇引用单元mshtml; 路径:C:\windows\assembly\GAC\Microsoft.mshtml\7.0.3300.0__b03f5f7f11d50a3a\Microsoft.msh ...
- C# 自己动手实现Spy++(二)
昨天已经实现了获取窗口的标题.句柄等信息,但是高亮部分还有问题,而且红色绘制框擦除也有问题,今天就又研究了下上述两个问题. 高亮部分红色框只显示左上的边框,而右下的显示不出来,如图: 代码如下: pu ...
- 利用NPOI导出数据到Execl
相信很多童鞋都开发过Execl的导入导出功能,最近产品中无论是后台数据分析的需要,还是前端满足用户管理的方便,都有Execl导入导出的维护需求产生. 以前做这个功能,如果是web,利用HttpCont ...
- vue elment-ui 样式替换 input select
# 有时候经常需要替换element-ui的样式 第一种方法: 直接修改源码,样式路径如下 直接修改idnex.css即可. 第二种方法: 直接在当前页面修改,替换掉原来的样式. <style ...
- Solr DocValues详解
前言: 在Lucene4.x之后,出现一个重大的特性,就是索引支持DocValues,这对于广大的solr和elasticsearch用户,无疑来说是一个福音,这玩意的出现通过牺牲一定的磁盘空间带来的 ...