几何+博弈的简单组合技

给出n个圆,有包含关系,以这个关系做游戏,每次操作可以选择把一个圆及它内部的圆全部删除,不能操作者输。

圆的包含关系显然可以看做是树型结构,所以也就是树上删边的游戏。

而找圆的包含关系,这题数据不大可用n^2复杂度找。也可以用扫描线,实时记录其节点父亲的情况。3种情况分类讨论一下就可以了。

/** @Date    : 2017-10-18 20:21:54
* @FileName: HDU 5299 圆扫描线+树上删边.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 2e4+20;
const double eps = 1e-8; struct yuu
{
double x, y, r;
yuu(){}
yuu(double _x, double _y, double _r):x(_x), y(_y), r(_r){}
}; yuu pt[N];
double scanx;
struct Node{
int id, flag;
Node(){}
Node(int i, int f):id(i),flag(f){}
bool operator <(const Node &b) const {
double dis1 = sqrt(pt[id].r*pt[id].r - (scanx - pt[id].x) * (scanx - pt[id].x));
double dis2 = sqrt(pt[b.id].r*pt[b.id].r - (scanx - pt[b.id].x) * (scanx - pt[b.id].x));
double y1 = pt[id].y + flag * dis1;
double y2 = pt[b.id].y + b.flag * dis2;
return y1 < y2 || (fabs(y1 - y2) < eps && flag < b.flag);
}
}; pair<double, int>evt[2*N];
vector<int>edg[N];
set<Node>st;
int cnt[N];
int fa[N]; void init(int n)
{
for(int i = 0; i <= n; i++)
{
fa[i] = 0;
edg[i].clear();
}
st.clear();
}
int get_sg(int x, int pre)
{
int res = 0;
for(auto i : edg[x])
{
if(i == pre)
continue;
res ^= 1 + get_sg(i, x);
}
return res;
} int main()
{
int T;
cin >> T;
while(T--)
{
int n;
scanf("%d", &n);
init(n);
for(int i = 1; i <= n; i++)
{
double x, y, r;
scanf("%lf%lf%lf", &x, &y, &r);
pt[i] = yuu(x, y, r);
evt[(i-1)*2] = MP(x - r, i);
evt[(i-1)*2 + 1] = MP(x + r, i + n);
}
sort(evt, evt + 2 * n); for(int i = 0; i < n * 2; i++)
{
scanx = evt[i].fi;
int t = evt[i].se;
if(t <= n)
{
int up = -1;
int dw = -1;
st.insert(Node(evt[i].se, -1));
auto pos = st.lower_bound(Node(evt[i].se,-1));
if((++pos) != st.end())
up = pos->id;
if((--pos) != st.begin())
dw = (--pos)->id;
if(up == dw && ~up)
{
fa[evt[i].se] = up;
edg[up].PB(evt[i].se);
}
else if(~dw && ~up)
{
if(fa[up] == fa[dw])
{
fa[evt[i].se] = fa[up];
edg[fa[up]].PB(evt[i].se);
}
else if(fa[up] == dw)
{
fa[evt[i].se] = dw;
edg[dw].PB(evt[i].se);
}
else if(fa[dw] == up)
{
fa[evt[i].se] = up;
edg[up].PB(evt[i].se);
}
}
else edg[0].PB(evt[i].se);
st.insert(Node(evt[i].se, 1));
}
else
{
st.erase(Node(evt[i].se-n, 1));
st.erase(Node(evt[i].se-n,-1));
}
}
/*for(int i = 0; i <= n; i++,cout<<endl)
{
cout<<i<<":";
for(auto j:edg[i])
printf("%d ", j);
}*/
int sg = get_sg(0, -1);
printf("%s\n", sg?"Alice":"Bob");
}
return 0;
}

HDU 5299 圆扫描线 + 树上删边的更多相关文章

  1. HDU 5299 Circles Game

    HDU 5299 思路: 圆扫描线+树上删边博弈 圆扫描线有以下四种情况,用set维护扫描线与圆的交点,重载小于号 代码: #pragma GCC optimize(2) #pragma GCC op ...

  2. HDU 3094 树上删边 NIM变形

    基本的树上删边游戏 写过很多遍了 /** @Date : 2017-10-13 18:19:37 * @FileName: HDU 3094 树上删边 NIM变形.cpp * @Platform: W ...

  3. 【HDU 3590】 PP and QQ (博弈-Anti-SG游戏,SJ定理,树上删边游戏)

    PP and QQ Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. POJ Christmas Game [树上删边游戏 Multi-SG]

    传送门 题意: 有N 个局部联通的图.Harry 和Sally 轮流从图中删边,删去一条边后,不与根节点相连的部分将被移走.Sally 为先手.图是通过从基础树中加一些边得到的.所有形成的环保证不共用 ...

  5. POJ.3710.Christmas Game(博弈论 树上删边游戏 Multi-SG)

    题目链接 \(Description\) 给定n棵"树",每棵"树"的节点可能"挂着"一个环,保证没有环相交,且与树只有一个公共点. 两人轮 ...

  6. POJ 3710 无向图简单环树上删边

    结论题,这题关键在于如何转换环,可以用tarjan求出连通分量后再进行标记,也可以DFS直接找到环后把点的SG值变掉就行了 /** @Date : 2017-10-23 19:47:47 * @Fil ...

  7. 【BZOJ 2688】 2688: Green Hackenbush (概率DP+博弈-树上删边)

    2688: Green Hackenbush Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 42  Solved: 16 Description   ...

  8. HDU5299 圆的扫描线 && 树上删边博弈

    HDU5299 圆的扫描线 && 树上删边博弈 标签(空格分隔): 未分类 给出若干个圆,可以互相嵌套但不相交或相切. 每次删去一个圆和它内部的圆,进行博弈,问谁赢. 分成两部分.首先 ...

  9. codeforces gym #101161F-Dictionary Game(字典树+树上删边游戏)

    题目链接: http://codeforces.com/gym/101161/attachments 题意: 给一个可以变化的字典树 在字典树上删边 如果某条边和根节点不连通那么这条边也删除 谁没得删 ...

随机推荐

  1. tornado学习笔记

    一.UIMOTHODS: 1.在项目目录创建uimothods.py文件(名称可以任意)内容: def test2(self): return ('hello uimothods') 2.tornad ...

  2. 获取【酷我音乐】歌曲URL地址

    非原创 酷我中的歌曲的页面地址通常是:www.kuwo.cn/yinyue/6181801,末尾的一串数字是这首歌曲的编号id. 我们只须在 http://player.kuwo.cn/webmusi ...

  3. Algorithms学习笔记-Chapter0序言

    0.开篇 <Algorithms>源自Berkeley和UCSD课程讲义,由   Sanjoy Dasgupta / Christos H. Papadimitriou / Umesh V ...

  4. EOS开发基础之六:使用cleos命令行客户端操作EOS——智能合约之eosio.msig和eosio.system

    上一节我们搞了老半天,也没整明白Exchange这个合约到底干啥用的.就它官方提供的说法,是用于货币的创造和交易.我没整明白,所以去看了下代码,发现代码头文件里面有下面这段话: This contra ...

  5. DRF框架QQ登录功能

    用户模块---QQ登录 流程图 QQ登录文档:http://wiki.connect.qq.com/%E5%87%86%E5%A4%87%E5%B7%A5%E4%BD%9C_oauth2-0 流程简述 ...

  6. 【SE】Week1 : 四则运算题目生成器批改器程序总结

    用户需求详见:http://www.cnblogs.com/jiel/p/4810756.html 1)PSP表格分析(预计耗时): PSP2.1 Personal Software Process ...

  7. Linux内核分析——第六周学习笔记

    进程的描述和进程的创建 前言:以下笔记除了一些讲解视频中的概念记录,图示.图示中的补充文字.总结.分析.小结部分均是个人理解.如有错误观点,请多指教! PS.实验操作会在提交到MOOC网站的博客中写.

  8. 《linux内核分析》第六周:分析fork函数对应的系统调用处理过程

    一. 阅读理解task_struct数据结构http://codelab.shiyanlou.com/xref/linux-3.18.6/include/linux/sched.h#1235: 进程是 ...

  9. c语言四则运算

    #include<stdio.h>#define W 5main(){ int a,b,i=0,c,d,r=0; while(i<W) { i++; srand(time()); a ...

  10. Visual studio 2013 安装的漫长过程

    本周有一个任务是安装VS 2013版本,下载了安装包,七点多G,oh my god!!! 图上维持了两三个小时,可能我电脑台low了..... 因为是win7系统,需要进行重启电脑. 安装成功之后. ...