cf113D. Museum(期望 高斯消元)
题意
Sol
设\(f[i][j]\)表示Petya在\(i\),\(Vasya\)在\(j\)的概率,我们要求的是\(f[i][i]\)
直接列方程高斯消元即可,由于每个状态有两维,因此时间复杂度为\(O(n^6)\)
注意不能从终止节点转移而来
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2333;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a, b, Lim;
double p[MAXN], f[MAXN][MAXN], E[MAXN][MAXN], deg[MAXN];
vector<int> v[MAXN];
int id[MAXN][MAXN], tot;
void Pre() {
f[id[a][b]][Lim + 1] = -1;
for(int i = 1; i <= N; i++) {
for(int j = 1; j <= N; j++) {
int now = id[i][j];
--f[now][now];//tag
if(i != j) f[now][now] += p[i] * p[j];
for(auto &x : v[i]) {
for(auto &y : v[j]) {
if(x == y) continue;
int nxt = id[x][y];
f[now][nxt] += (1.0 - p[x]) * (1.0 - p[y]) / deg[x] / deg[y];
}
}
for(auto &x : v[i]) {
int nxt = id[x][j];
if(x == j) continue;
f[now][nxt] += (1.0 - p[x]) * p[j] / deg[x];
}
for(auto &y : v[j]) {
int nxt = id[i][y];
if(i == y) continue;
f[now][nxt] += p[i] * (1.0 - p[y]) / deg[y];
}
}
}
}
void Gauss() {
for(int i = 1; i <= Lim; i++) {
int mx = i;
for(int j = i + 1; j <= Lim; j++) if(f[j][i] > f[mx][i] && f[j][i] != 0) swap(j, mx);
if(mx != i) swap(f[i], f[mx]);
// assert(fabs(f[i][i] < 1e-13));
for(int j = 1; j <= Lim; j++) {
if(i == j) continue;
double p = f[j][i] / f[i][i];
for(int k = i; k <= Lim + 1; k++) f[j][k] -= f[i][k] * p;
}
}
for(int i = 1; i <= Lim; i++) f[i][i] = f[i][Lim + 1] / f[i][i];
}
int main() {
N = read(); M = read(); a = read(); b = read(); Lim = N * N;
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
deg[x]++; deg[y]++;
}
for(int i = 1; i <= N; i++) scanf("%lf", &p[i]);
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
id[i][j] = ++tot;
Pre();
Gauss();
for(int i = 1; i <= N; i++) printf("%.10lf ", f[id[i][i]][id[i][i]]);
return 0;
}
cf113D. Museum(期望 高斯消元)的更多相关文章
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- 【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元
如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #inclu ...
- [HNOI2013]游走 期望+高斯消元
纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...
- UVa 10828 Back to Kernighan-Ritchie (数学期望 + 高斯消元)
题意:给定一个 n 个结点的有向图,然后从 1 结点出发,从每个结点向每个后继结点的概率是相同的,当走到一个没有后继结点后,那么程序终止,然后问你经过每个结点的期望是次数是多少. 析:假设 i 结点的 ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- BZOJ 3143 游走(贪心+期望+高斯消元)
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
随机推荐
- Vue2.5开发去哪儿网App 城市列表开发
一,城市选择页面路由配置 ...
- 03-02 Java键盘录入
键盘录入基本格式: /* 为了让程序的数据更符合开发的数据,我们就加入了键盘录入. 让程序更灵活一下. 那么,我们如何实现键盘数据的录入呢? A:导包 格式: import java.util.Sca ...
- vue教程3-01 路由、组件、bower包管理器使用
vue教程3-01 路由.组件.包管理器 以下操作前提是 已经安装好node.js npm bower-> (前端)包管理器 下载: npm install bower -g 验证: bower ...
- ASP.NET Core 1.0 中 EntityFramework 与 PostgreSQL 的使用
https://docs.efproject.net/en/latest/providers/npgsql/index.html 前面在CentOS6.7环境下配置好了PostgreSQL, 就顺便试 ...
- 全网最详细的大数据集群环境下如何正确安装并配置多个不同版本的Cloudera Hue(图文详解)
不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 全网最详细的大数据集群 ...
- Java 范例 - 线程
创建线程 Java 中有以下三种方式创建线程,其中前两种无法获取返回值,而最后一种可以获取返回值. 实现 Runnable 接口 继承 Thread 类 通过 Callable.Future 接口配合 ...
- Django使用Signals监测model字段变化发送通知
上一篇文章<运维效率之数据迁移自动化>中讲到了工单通知,本文将介绍工单通知实现过程中的一些小技巧.所有演示均基于Django2.0 阅读此篇文章你可以: 解锁一个python if的使用新 ...
- js便签笔记(8)——js加载XML字符串或文件
1. 加载XML文件 方法1:ajax方式.代码如下: var xhr = window.XMLHttpRequest ? new XMLHttpRequest() : new ActiveXObje ...
- java学习-http中get请求的非ascii参数如何编码解码探讨
# 背景: 看着别人项目代码看到一个PathUtils工具类, 里面只有一个方法,String rebuild(String Path),将路径进行URLDecoder.decode解码,避免路径中 ...
- Double与BigDecimal 精度问题
转自:http://superivan.iteye.com/blog/963628 [1] 精确的浮点运算: 在Java里面,有时候为了保证数值的准确性需要精确的数据,先提供一个例子就可以发现问题了: ...