洛谷P2287 [HNOI2004]最佳包裹(三维凸包)
题面
题解
左转板子,调个精度就能\(A\)了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
double readdb()
{
R double x=0,y=0.1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(x=ch-'0';(ch=getc())>='0'&&ch<='9';x=x*10+ch-'0');
for(ch=='.'&&(ch=getc());ch>='0'&&ch<='9';x+=(ch-'0')*y,y*=0.1,ch=getc());
return x*f;
}
const int N=105;const double eps=1e-10;
inline double Rd(){return 1.0*rand()/RAND_MAX;}
inline double reps(){return (Rd()-0.5)*eps;}
struct point{
double x,y,z;
point(){}
point(R double xx,R double yy,R double zz):x(xx),y(yy),z(zz){}
inline void init(){x=readdb()+reps(),y=readdb()+reps(),z=readdb()+reps();}
inline point operator -(const point &b)const{return point(x-b.x,y-b.y,z-b.z);}
inline point operator *(const point &b)const{return point(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);}
inline double operator ^(const point &b)const{return x*b.x+y*b.y+z*b.z;}
inline double norm()const{return sqrt(x*x+y*y+z*z);}
}p[N];
struct node{
int id[3];
node(){}
node(R int x,R int y,R int z){id[0]=x,id[1]=y,id[2]=z;}
inline point normal(){return (p[id[1]]-p[id[0]])*(p[id[2]]-p[id[0]]);}
inline double area(){return normal().norm()/2;}
inline bool ck(const point &b){return ((b-p[id[0]])^normal())>0;}
}f[N],st[N];
int vis[N][N],n,top,cnt,v;double res;
void Convex_3D(){
f[++cnt]=node(1,2,3),f[++cnt]=node(3,2,1);
fp(i,4,n){
top=0;
fp(j,1,cnt){
v=f[j].ck(p[i]),!v?(st[++top]=f[j],0):0;
vis[f[j].id[0]][f[j].id[1]]=
vis[f[j].id[1]][f[j].id[2]]=
vis[f[j].id[2]][f[j].id[0]]=v;
}
fp(j,1,cnt){
if(vis[f[j].id[0]][f[j].id[1]]&&!vis[f[j].id[1]][f[j].id[0]])st[++top]=node(i,f[j].id[0],f[j].id[1]);
if(vis[f[j].id[1]][f[j].id[2]]&&!vis[f[j].id[2]][f[j].id[1]])st[++top]=node(i,f[j].id[1],f[j].id[2]);
if(vis[f[j].id[2]][f[j].id[0]]&&!vis[f[j].id[0]][f[j].id[2]])st[++top]=node(i,f[j].id[2],f[j].id[0]);
}
fp(j,1,top)f[j]=st[j];cnt=top;
}
fp(i,1,cnt)res+=f[i].area();
printf("%.6lf\n",res);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
fp(i,1,n)p[i].init();
Convex_3D();
return 0;
}
洛谷P2287 [HNOI2004]最佳包裹(三维凸包)的更多相关文章
- bzoj 1209: [HNOI2004]最佳包裹 三维凸包
1209: [HNOI2004]最佳包裹 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 160 Solved: 58[Submit][Status] ...
- BZOJ1209 [HNOI2004]最佳包裹 三维凸包 计算几何
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1209 题目概括 给出立体的n个点.求三维凸包面积. 题解 增量法,看了一天,还是没有完全懂. 上板 ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 洛谷P4724 【模板】三维凸包
题面 传送门 题解 先理一下关于立体几何的基本芝士好了--顺便全都是从\(xzy\)巨巨的博客上抄来的 加减 三维向量加减和二维向量一样 模长 \(|a|=\sqrt{x^2+y^2+z^2}\) 点 ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
- 【算法学习】【洛谷】cdq分治 & P3810 三维偏序
cdq是何许人也?请参看这篇:https://wenku.baidu.com/view/3b913556fd0a79563d1e7245.html. 在这篇论文中,cdq提出了对修改/询问型问题(Mo ...
- Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)
题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...
- 洛谷 P2292 [HNOI2004] L语言 解题报告
P2292 [HNOI2004] L语言 题目描述 标点符号的出现晚于文字的出现,所以以前的语言都是没有标点的.现在你要处理的就是一段没有标点的文章. 一段文章\(T\)是由若干小写字母构成.一个单词 ...
- [洛谷 P1559] 运动员最佳匹配问题
题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...
随机推荐
- springboot成神之——application.properties所有可用属性
application.properties所有可用属性 # =================================================================== # ...
- 工程添加EF框架的方法
1.VS2015添加新项缺少ADO.net实体数据模型解决方法 手动运行安装目录包中的\packages\EFTools\EFTools.msi即可恢复 2.此时,在添加->新建项目下会出现AD ...
- leetcode824
class Solution { public: void SplitString(const string& s, vector<string>& v, const st ...
- WebRTC相关的基础知识点
这里主要用来记录自己整理的和webRTC相关的一些基本的知识点,后续整理的一些基础和零碎的知识点都会更新在这里.内容大部分来自于webRTC官网.w3c以及一些前辈们的博客中的文章和相关书籍等. 20 ...
- Spring Cloud Zuul 2(基于配置中心的动态API网关)
在大体了解了API Zuul 和 配置中心Config后我们来尝试完成一个基于配置中心的动态API网关 创建项目 命名为api-gateway-dynamic-route并加入config 和 Zuu ...
- Vmware中的centos虚拟机克隆之后没有eth0
克隆虚拟机之后,CentOS没有eth0的解决办法 我们常常需要从一台已经安装完成的虚拟机系统克隆出来一个新系统(克隆时候必须要改变网卡物理地址,这一点无需多说),但是新系统启动之后,会发现系统网络工 ...
- day63-webservice 01.cxf介绍
CXF功能就比较强了.CXF支持soap1.2.CXF和Spring整合的非常密切.它的配置文件基本就是Spring的配置文件了.CXF是要部署在服务器才能用的.CXF得放到Web容器里面去发布.CX ...
- php安装memcache
php扩展memcache的作用是为了支持memcached数据库缓存服务器,下面是安装方法. 1.下载并解压memcache文件 1 2 3 wget -c http://pecl.php.net/ ...
- 用插件NPOI读写excel
1.用插件NPOIusing NPOI.SS.UserModel;using NPOI.XSSF.UserModel;using NPOI.HSSF.UserModel; public class E ...
- mask rcnn训练自己的数据集参考文章(推荐)
最近用Mask_RCNN训练模型,下面几篇文章提供了不少帮助,汇总出来,方便以后查找,并向几位博主老师表示感谢 https://blog.csdn.net/qq_29462849/article/de ...