Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −10 4 <= xi, yi <= 10 4 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

题意:在二维平面上面找三个点构成三角形,使得其面积最大。

思路1:枚举三角形的一条边,然后通过旋转卡壳找最远的点; 自己想的,而且AC了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define RC rotating_calipers
using namespace std;
const int maxn=;
struct point{
double x,y;
point(double x=,double y=):x(x),y(y){}
bool operator < (const point &c) const { return x<c.x||(x==c.x&&y<c.y);}
point operator - (const point &c) const { return point(x-c.x,y-c.y);}
double operator * (const point &c) const { return x*c.y-y*c.x; }
double operator | (const point &c) const { return (x-c.x)*(x-c.x)+(y-c.y)*(y-c.y); }
};
double det(point A,point B){ return A.x*B.y-A.y*B.x;}
double det(point O,point A,point B){ return det(A-O,B-O);}
point a[maxn],ch[maxn];
void convexhull(int n,int &top)
{
sort(a+,a+n+); top=;
for(int i=;i<=n;i++){
while(top>&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
int ttop=top;
for(int i=n-;i>=;i--){
while(top>ttop&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
}
double rotating_calipers(point p[],int top)
{
top--;
double ans=; int now;
rep(i,,top-){
int now=i+;
rep(j,i+,top-){
while(now<=top&&fabs(det(p[i],p[j],p[now]))<fabs(det(p[i],p[j],p[now+]))){
now++;
}
ans=max(ans,fabs(det(p[i],p[j],p[now])));
}
}
return ans;
}
int main()
{
int N;
while(~scanf("%d",&N)&&N!=-){
for(int i=;i<=N;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
int top; convexhull(N,top);
double ans=RC(ch,top);
printf("%.2f\n",0.5*ans);
}
return ;
}

思路2:枚举三角形的一个点,然后通过旋转卡壳找最远的边。别人的代码,AC了,但是拿去做CF的时候WA36了。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define RC rotating_calipers
using namespace std;
const int maxn=;
struct point{
double x,y;
point(double x=,double y=):x(x),y(y){}
bool operator < (const point &c) const { return x<c.x||(x==c.x&&y<c.y);}
point operator - (const point &c) const { return point(x-c.x,y-c.y);}
};
double det(point A,point B){ return A.x*B.y-A.y*B.x;}
double det(point O,point A,point B){ return det(A-O,B-O);}
point a[maxn],ch[maxn];
void convexhull(int n,int &top)
{
sort(a+,a+n+); top=;
for(int i=;i<=n;i++){
while(top>&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
int ttop=top;
for(int i=n-;i>=;i--){
while(top>ttop&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
}
double rotating_calipers(point p[],int top)
{
double ans=; int now1=,now2=;
rep(i,,top){
while(fabs(det(p[i],p[now1],p[now2]))<fabs(det(p[i],p[now1],p[now2+]))){
now2++;if(now2==top+1) now2=;
}//利用其是单峰函数
while(fabs(det(p[i],p[now1],p[now2]))<fabs(det(p[i],p[now1+],p[now2]))){
now1++;if(now1==top+1) now1=;
}
ans=max(ans,fabs(det(p[i],p[now1],p[now2])));
}
return ans;
}
int main()
{
int N;
while(~scanf("%d",&N)&&N!=-){
for(int i=;i<=N;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
int top; convexhull(N,top);
double ans=RC(ch,top-);
printf("%.2f\n",0.5*ans);
}
return ;
}

POJ - 2079:Triangle (旋转卡壳,求最大三角形)的更多相关文章

  1. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  2. POJ 2079 Triangle [旋转卡壳]

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9525   Accepted: 2845 Descript ...

  3. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

  4. CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)

    You are given n points with integer coordinates on the plane. Points are given in a way such that th ...

  5. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  6. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  7. [hdu5251]矩形面积 旋转卡壳求最小矩形覆盖

    旋转卡壳求最小矩形覆盖的模板题. 因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可. #include<cstdio> # ...

  8. POJ2187 旋转卡壳 求最长直径

    给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...

  9. POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 7625   Accepted: 2234 Descript ...

  10. poj 2079 Triangle,旋转卡壳求点集的最大三角形

    给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...

随机推荐

  1. 利用onresize使得div可以随着屏幕大小而自适应的代码

    原文:http://www.jb51.net/article/21831.htm 当我们让div居中时候,一般有两种方法,一种是固定左右宽度,也就是使用像素绝对定位:另一种是用百分比来相对定位,在这种 ...

  2. 024_MapReduce中的基类Mapper和基类Reducer

    内容提纲 1) MapReduce中的基类Mapper类,自定义Mapper类的父类. 2) MapReduce中的基类Reducer类,自定义Reducer类的父类. 1.Mapper类 API文档 ...

  3. Linux Shell编程 cut、print命令

    cut命令:查找符合条件的列 cut  命令是在文件中提取符合条件的列,虽然 cut 命令用于提取符合条件的列,但是也要一行一行地进行数据提取.也就是说,先要读取文本的第一行数据,在此行中判断是否有符 ...

  4. Linux文件系统管理 开机自动挂载及fstab文件修复

    概述 开机自动挂载及fstab文件修复 开机自动挂载 实现开机后自动挂载,就需要修改系统的自动挂载文件 /etc/fstab.因为系统就是依赖这个文件决定启动时加载的文件系统的.通过vi 打开/etc ...

  5. Linux FTP 上传一键脚本

    下面来介绍一下这个 FTP 上传一键脚本 ftp_upload.sh. 用途:用于在Linux系统下搭建FTP客户端向FTP服务器端上传文件: 总结一下 ftp_upload.sh 特点:1.支持文件 ...

  6. 【P3957】跳房子(单调队列+DP+二分)

    终于把这个题缸出来了,话说这题也不是想的那么难... 因为最小的最大,所以二分,因为由前面推出后面,所以DP,因为输入单调,朴素DP会T,所以单调队列.要注意的是,这个题数据很大,要开LL,然后DP数 ...

  7. MVC 绑定 下拉框数据

    HTML: <div class="form-group col-sm-12"> <div class="col-sm-4"> < ...

  8. Codeforces Beta Round #61 (Div. 2) D. Petya and His Friends 想法

    D. Petya and His Friends time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  9. js添加后缀防止缓存

    jsp页面: 时间戳的话需要引入: <%@ page import="java.util.Date"%> <script type="text/java ...

  10. java异常中的finally(一)

    finally是保证语句能一定执行的.不管程序是否会报错,我们把程序一定要执行的代码放在finally中. 比如说流的关闭,不管在读写的过程中是否报错,一定要关闭流,可以把流的关闭操作放在finall ...