1494: [NOI2007]生成树计数

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 793  Solved: 451
[Submit][Status][Discuss]

Description

最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现:
·n个结点的环的生成树个数为n。
·n个结点的完全图的生成树个数为n^(n-2)。这两个发现让小栋欣喜若狂,由此更加坚定了他继续计算生成树个数的
想法,他要计算出各种各样图的生成树数目。一天,小栋和同学聚会,大家围坐在一张大圆桌周围。小栋看了看,
马上想到了生成树问题。如果把每个同学看成一个结点,邻座(结点间距离为1)的同学间连一条边,就变成了一
个环。可是,小栋对环的计数已经十分娴熟且不再感兴趣。于是,小栋又把图变了一下:不仅把邻座的同学之间连
一条边,还把相隔一个座位(结点间距离为2)的同学之间也连一条边,将结点间有边直接相连的这两种情况统称
为有边相连,如图1所示。
小栋以前没有计算过这类图的生成树个数,但是,他想起了老师讲过的计算任意图的生成树个数的一种通用方法:
构造一个n×n的矩阵A={aij},其中
其中di表示结点i的度数。与图1相应的A矩阵如下所示。为了计算图1所对应的生成数的个数,只要去掉矩阵A的最
后一行和最后一列,得到一个(n-1)×(n-1)的矩阵B,计算出矩阵B的行列式的值便可得到图1的生成树的个数所以
生成树的个数为|B|=3528。小栋发现利用通用方法,因计算过于复杂而很难算出来,而且用其他方法也难以找到更
简便的公式进行计算。于是,他将图做了简化,从一个地方将圆桌断开,这样所有的同学形成了一条链,连接距离
为1和距离为2的点。例如八个点的情形如下:
 
 
这样生成树的总数就减少了很多。小栋不停的思考,一直到聚会结束,终于找到了一种快捷的方法计算出这个图的
生成树个数。可是,如果把距离为3的点也连起来,小栋就不知道如何快捷计算了。现在,请你帮助小栋计算这类
图的生成树的数目。
 

Input

包含两个整数k,n,由一个空格分隔。k表示要将所有距离不超过k(含k)的结点连接起来,n表示有n个结点。

Output

输出一个整数,表示生成树的个数。由于答案可能比较大,所以你 只要输出答案除65521 的余数即可。

Sample Input

3 5

Sample Output

75

HINT

 

Source

 
观察到k很小,n很大。
考虑状压dp,矩阵快速幂优化。
但是我们需要对状态进行离散化,还需有一些小技巧,可以看程序。
 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define maxn 150
#define mod 65521
using namespace std;
int size[]={,,,,,};
long long n,k;int cnt;
struct data {
long long mat[maxn+][maxn+];
data() {memset(mat,,sizeof(mat));}
data operator *(const data t1) {
data tp;
for(int i=;i<=cnt;i++)
for(int j=;j<=cnt;j++)
for(int k=;k<=cnt;k++) tp.mat[i][j]+=mat[i][k]*t1.mat[k][j],tp.mat[i][j]%=mod;
return tp;
}
}A,B;
int hash[],sta[];
int fa[];
int find(int x){return fa[x]==x?fa[x]:fa[x]=find(fa[x]);}
void prepare(int pos,int now,int ma) {
if(pos==k+) {
hash[now]=cnt++;
sta[cnt-]=now;
return;
}
for(int i=;i<=ma;i++) prepare(pos+,now+(i<<(*(pos-))),ma+(i==ma));
}
int get() {
int h[];
memset(h,-,sizeof(h));
int re=;
int cc=;
for(int i=;i<=k+;i++) {
if(h[find(i)]==-) h[find(i)]=++cc;
}
for(int i=;i<=k+;i++) {
int now=h[find(i)];
re+=(now<<(*(i-)));
}
return hash[re];
}
void build(int x,int add) {
int now=sta[x];
for(int i=;i<=k+;i++) fa[i]=i;
for(int i=;i<=k;i++) {
for(int j=i+;j<=k;j++) {
if(((now>>((i-)*))&)==((now>>((j-)*))&)) {
int f1=find(i),f2=find(j);
if(f1!=f2) fa[f1]=f2;
}
}
}
for(int i=;i<=k;i++) {
if(add&(<<(i-))) {
int f1=find(i),f2=find(k+);
if(f1==f2) return;
fa[f1]=f2;
}
}
bool flag=;
for(int i=;i<=k+;i++) {
if(find()==find(i)) {flag=;break;}
}
if(!flag) return;
A.mat[get()][x]++;
}
data pow(data x,long long p) {
data ans;
for(int i=;i<=maxn;i++) ans.mat[i][i]=;
while(p) {
if(p&) ans=ans*x;
x=x*x;
p>>=; }
return ans;
}
int main() {
for(int i=;i<=maxn;i++) B.mat[i][]=;
scanf("%lld%lld",&k,&n);
prepare(,,);
for(int i=;i<cnt;i++)
for(int j=;j<(<<k);j++) build(i,j);
/*for(int i=0;i<cnt;i++) {
for(int j=0;j<=k;j++) cout<<A.mat[i][j]<<' ';
cout<<endl;
}*/
for(int i=;i<cnt;i++) {
int now=sta[i];
int tmp[]={};
for(int j=;j<=k;j++) tmp[now>>((j-)*)&]++;
for(int j=;j<=k;j++) B.mat[i][]*=size[tmp[j]];
} A=pow(A,n-k);
A=A*B;
printf("%lld",A.mat[][]%mod);
}

[BZOJ1494][NOI2007]生成树计数 状压dp 并查集的更多相关文章

  1. HDU5117 Fluorescent 期望 计数 状压dp 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/HDU5117.html 题目传送门 - HDU5117 题意 $T$ 组数据. 给你 $n$ 盏灯 ,$m$ 个 ...

  2. BZOJ1494 [NOI2007]生成树计数

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

  3. CCPC-Wannafly Winter Camp Day3 Div1 - 精简改良 - [生成树][状压DP]

    题目链接:https://zhixincode.com/contest/14/problem/D?problem_id=206 样例输入 1  5 5 1 2 1 1 3 1 2 4 1 2 5 1 ...

  4. hdu5304 Eastest Magical Day Seep Group&#39;s Summer 状压dp+生成树

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5304 16个点的无向图,问能生成多少个n条边的连通图.(即多一条边的树) 先n^3 * 2^n 枚举全部的 ...

  5. 状态压缩动态规划 状压DP

    总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...

  6. AGC 016 F - Games on DAG(状压dp)

    题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...

  7. P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp

    正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...

  8. BZOJ.3058.四叶草魔杖(Kruskal 状压DP)

    题目链接 \(2^{16}=65536\),可以想到状压DP.但是又有\(\sum A_i\neq 0\)的问题.. 但是\(2^n\)这么小,完全可以枚举所有子集找到\(\sum A_i=0\)的, ...

  9. 【ZJOI2017 Round1练习&BZOJ4774】D3T2 road(斯坦纳树,状压DP)

    题意: 对于边带权的无向图 G = (V, E),请选择一些边, 使得1<=i<=d,i号节点和 n − i + 1 号节点可以通过选中的边连通, 最小化选中的所有边的权值和. d< ...

随机推荐

  1. lnmp1.4,400,500,错误

    Thinkphp5或其他主流框架,入口文件未放在根目录下,比如Thinkphp5 入口文件放在/public/index.php vhost需要指向/public目录 一键安装包通常会报 open_b ...

  2. regex & form validation & phone

    regex & form validation https://regexper.com/ https://gitlab.com/javallone/regexper-static https ...

  3. 【bzoj2659】[Beijing wc2012]算不出的算式 数论

    题目描述 求,其中p和q是奇质数. 输入 只有一行,两个奇质数,分别表示p,q. 输出 一个数,表示算式结果. 样例输入 5 样例输出 6 题解 数论 神TM数学结论题... 当$p\neq q$时, ...

  4. 【bzoj1455】罗马游戏 可并堆+并查集

    题目描述 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻.他决定玩这样 ...

  5. 【bzoj2631】tree LCT

    题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一:+ u v c:将u到v的路径上的点的权值都加上自然数c:- u1 v1 u2 v2:将树中原有的边( ...

  6. 2017 Multi-University Training Contest - Team 2 TrickGCD(组合数学)

    题目大意: 给你一个序列An,然后求有多少个序列Bn 满足Bi<=Ai,且这个序列的gcd不为1 题解: 考虑这样做 枚举一个因子k,然后求出有多少个序列的gcd包含这个因子k 然后把结果容斥一 ...

  7. bzoj2827: 千山鸟飞绝 平衡树 替罪羊树 蜜汁标记

    这道题首先可以看出坐标没有什么意义离散掉就好了. 然后你就会发现你要每次都更改坐标,而一旦更改受影响的是坐标里的所有数,要是一个一个的改,会不可描述. 所以换个视角,我们要找的是某只鸟所到每个坐标时遇 ...

  8. json 串转成 java 对象再拼接成前台 html 元素

    获取商品参数 json 串,转成 java 对象,再拼接成前台 html 的Service方法 @Override public String getItemParam(Long itemId) { ...

  9. Codeforces Round #510 (Div. 2) D. Petya and Array(树状数组)

    D. Petya and Array 题目链接:https://codeforces.com/contest/1042/problem/D 题意: 给出n个数,问一共有多少个区间,满足区间和小于t. ...

  10. 用静态工厂的方法实例化bean

    //代码如下: package com.timo.domain; public class ClientService { //use static factory method create bea ...