在:http://www.lmdb.tech/bench/inmem/

2. Small Data Set

Using the laptop we generate a database with 20 million records. The records have 16 byte keys and 100 byte values so the resulting database should be about 2.2GB in size. After the data is loaded a "readwhilewriting" test is run using 4 reader threads and one writer. All of the threads operate on randomly selected records in the database. The writer performs updates to existing records; no records are added or deleted so the DB size should not change much during the test.

The tests in this section and in Section 3 are all run on a tmpfs, just like the RocksDB report. I.e., all of the data is stored only in RAM. Additional tests using an SSD follow in Section 4.

The pertinent results are tabulated here and expanded on in the following sections.

Engine Load Time Overhead Load Size Writes/Sec Reads/Sec Run Time Final Size CPU% Process Size
  Wall User Sys   KB   Wall User Sys KB   KB
LevelDB 00:34.70 00:44.72 00:06.70 1.4818443804 2246004 10232 26678 00:49:58.73 01:31:48.62 00:52:50.95 3452388 289% 2138508
Basho 00:40.41 01:24.39 00:17.82 2.5293244246 2368768 10232 68418 00:19:32.94 01:14:10.04 00:01:19.19 2612436 386% 6775376
BerkeleyDB 02:12.61 01:58.92 00:13.57 0.9990950909 5844376 00:15:28.44 00:42:07.97 00:17:27.49 5839912 385% 3040716
Hyper 00:38.78 00:49.88 00:06.43 1.4520371325 2246448 10208 138393 00:09:38.39 00:35:06.12 00:02:06.18 2292632 385% 2700088
LMDB 00:10.55 00:08.15 00:02.37 0.9971563981 2516192 00:00:55.46 00:03:37.63 00:00:01.67 2547968 395% 2550408
RocksDB 00:21.54 00:34.70 00:05.99 1.8890436397 2256032 10233 91544 00:14:37.74 00:54:06.84 00:02:38.04 3181764 387% 6713852
TokuDB 01:45.12 01:41.58 00:47.37 1.4169520548 2726168 9881 109682 00:12:12.91 00:37:41.45 00:07:10.03 3920784 367% 5429056
WiredLSM 01:10.93 02:35.55 00:18.62 2.4555195263 2492440 00:07:26.24 00:28:55.85 00:00:07.76 2948988 390% 3205396
WiredBtree 00:17.79 00:15.68 00:02.09 0.9988757729 2381876 00:01:53.46 00:06:36.98 00:00:14.78 4752568 362% 3415468

3. Larger Data Set

These tests use 100 million records and are run on the 16 core server. Aside from the data set size things are much the same. Here are the tabular results:

Engine Load Time Overhead Load Size Writes/Sec Reads/Sec Run Time Final Size CPU% Process Size
  Wall User Sys   KB     Wall User Sys KB   KB
LevelDB 03:06.75 04:41.26 00:42.87 1.7356358768 11273396 01:00:02.00 01:22:11.46 01:52:10.46 13734168 323% 3284192
Basho 04:22.96 11:09.24 02:18.93 3.0733571646 11449492 10211 80135 01:00:23.00 14:32:23.67 00:11:49.40 13841220 1464% 19257796
BerkeleyDB 14:59.45 13:34.30 01:25.15 1 28381956 01:00:02.00 03:02:00.69 12:42:39.63 28387880 1573% 14756768
Hyper 03:43.61 05:41.14 00:39.02 1.7001028577 11280092 10231 11673 01:00:04.00 01:59:42.09 01:53:24.27 15149416 387% 6332460
LMDB 01:04.15 00:52.31 00:11.82 0.9996882307 12605332 00:11:14.14 02:47:58.57 00:00:10.06 12627692 1598% 12605788
RocksDB 02:28.66 03:59.92 00:30.97 1.8222117584 11289688 10232 129397 01:00:22.00 12:08:05.94 02:51:58.54 12777708 1490% 18599544
TokuDB 07:44.10 09:17.31 02:54.82 1.5775263952 12665136 4601 70208 01:00:15.00 03:02:37.44 11:21:45.00 15328956 1434% 23315964
WiredLSM 07:10.50 19:25.80 02:31.10 3.0590011614 12254620 01:00:05.00 15:51:04.17 00:02:09.76 16016296 1586% 17723992
WiredBtree 02:07.49 01:49.52 00:17.97 1 11932620 00:20:58.10 05:06:13.60 00:05:14.87 23865368 1560% 20743232

看这个pdf里有对kv存储的架构和底层原理的详细介绍:

https://daim.idi.ntnu.no/masteroppgaver/008/8885/masteroppgave.pdf

levelDB, TokuDB, BDB等kv存储引擎性能对比——wiredtree, wiredLSM,LMDB读写很强啊的更多相关文章

  1. Java模板引擎性能对比

    模板引擎性能对比 从Github上翻到对JSP.Thymeleaf 3.Velocity 1.7.Freemarker 2.3.23几款主流模板的性能对比,总体上看,Freemarker.Veloci ...

  2. 基于淘宝开源Tair分布式KV存储引擎的整合部署

    一.前言 Tair支撑了淘宝几乎所有系统的缓存信息(Tair = Taobao Pair,Pair即Key-Value键值对),内置了三个存储引擎:mdb(默认,类似于Memcache).rdb(类似 ...

  3. MySql存储引擎特性对比

    下表显示了各种存储引擎的特性: 其中最常见的两种存储引擎是MyISAM和InnoDB 刚接触MySQL的时候可能会有些惊讶,竟然有不支持事务的存储引擎,学过关系型数据库理论的人都知道,事务是关系型数据 ...

  4. mysql存储引擎的对比

  5. MongoDB存储引擎选择

    MongoDB存储引擎选择 MongoDB存储引擎构架 插件式存储引擎, MongoDB 3.0引入了插件式存储引擎API,为第三方的存储引擎厂商加入MongoDB提供了方便,这一变化无疑参考了MyS ...

  6. MongoDB 存储引擎选择

    MongoDB存储引擎选择 MongoDB存储引擎构架 插件式存储引擎, MongoDB 3.0引入了插件式存储引擎API,为第三方的存储引擎厂商加入MongoDB提供了方便,这一变化无疑参考了MyS ...

  7. MySQL性能调优与架构设计——第3章 MySQL存储引擎简介

    第3章 MySQL存储引擎简介 3.1 MySQL 存储引擎概述 MyISAM存储引擎是MySQL默认的存储引擎,也是目前MySQL使用最为广泛的存储引擎之一.他的前身就是我们在MySQL发展历程中所 ...

  8. MySql(十一):MySQL性能调优——常用存储引擎优化

    一.前言 MySQL 提供的非常丰富的存储引擎种类供大家选择,有多种选择固然是好事,但是需要我们理解掌握的知识也会增加很多.本章将介绍最为常用的两种存储引擎进行针对性的优化建议. 二.MyISAM存储 ...

  9. MySQL性能优化(一)-- 存储引擎和三范式

    一.MySQL存储引擎 存储引擎说白了就是如何存储数据.如何为存储的数据建立索引和如何更新.查询数据等技术的实现方法.因为在关系数据库中数据的存储是以表的形式存储的,所以存储引擎也可以称为表类型(即存 ...

随机推荐

  1. return和yield的区别

    # return 返回给调用者值,并结束此函数.#yiled 返回给调用者值,并将指针停留着当前位置.

  2. 中文价格识别为数字 java代码

    运行效果: public class VoicePriceRecognition { private final static String NOT_HAS_PRICE_CONTENT="n ...

  3. 剑指offer 面试8题

    面试8题: 题目:二叉树的下一个节点 题目描述:给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. 解题思路:详见剑 ...

  4. LeetCode:搜索旋转排序数组【33】

    LeetCode:搜索旋转排序数组[33] 题目描述 假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2]  ...

  5. 纯代码编写qt登录界面(转)

    1. 新建Qt Widgets Application,项目名称为login1,在类信息页面保持类名和基类为MainWindow和QMainWindow不变,取消选择创建界面选项,如下图所示.     ...

  6. 苹果终端wifi图标点亮慢和portal弹窗机制分析以及处理办法和建议

    转:http://kms.h3c.com/View.aspx?id=52875 问题现象 在无线环境中经常碰到苹果终端连接无线后wifi图标无法点亮导致终端无法上网.在起portal的网络中认证页面无 ...

  7. Python编程-多线程

    一.python并发编程之多线程 1.threading模块 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 1.1 开启线程的 ...

  8. [POI2009]Slw

    题目 神题!!只有\(POI\)出得出来的神题!! 只能说好像懂了,不想听蒟蒻废话就右转\(dalao\)的博客 目前网上除官方外仅三篇题解,由于推论无法直观得出且有点复杂,难免不好理解,手玩数据最重 ...

  9. Listening Carefully SP1403S

    Listening Carefully仔细聆听When people talk, listen completely. Most people never listen. ―Ernest Heming ...

  10. iOS_mapKit与Core Location

    目 录: 一.使用MKMap控件 二.根据地址定位 三.在地图上添加锚点   iOS从3.0版本开始提供了MapKit.frameword支持.该框架提供了一个可被嵌入到应用程序中的地图视图类MKMa ...