Description

$JSOI$的国境线上有$N$一座连续的山峰,其中第$i$座的高度是$h_i$​​.为了简单起见,我们认为这$N$座山峰排成了连续一条直线.

如果在第$i$座山峰上建立一座高度为$p(p\;\geq\;0)$的灯塔,$JYY$发现,这座灯塔能够照亮第$j$座山峰,当且仅当满足如下不等式:

$h_j\;\leq\;h_i+p+\sqrt{|i-j|}$

$JSOI$国王希望对于每一座山峰,$JYY$都能提供建造一座能够照亮全部其他山峰的灯塔所需要的最小高度.你能帮助$JYY$么?

HINT

$1<N\;\leq\;10^5,0<h_i\;\leq\;10^9$.

Solution

题解过段时间补.

先贴$Menci$神犇的:

#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define K 17
#define N 100001
struct section{
int l,r;
}s[N];
int st[N][K],h[N],m[N],sq[N],log_2[N],n,ans;
double k;
inline int read(){
int ret=0;char c=getchar();
while(!(c>='0'&&c<='9'))
c=getchar();
while(c>='0'&&c<='9'){
ret=ret*10+c-'0';c=getchar();
}
return ret;
}
inline int sqr(int k){
return k*k;
}
inline int max(int x,int y){
return x>y?x:y;
}
inline void ini_st(){
log_2[1]=0;
for(int i=2;i<=n;i++){
log_2[i]=log_2[i-1];
if((1<<log_2[i]+1)==i)/*pow(2,log_2[i]+1)==i*/
log_2[i]++;
}
for(int i=n;i>=1;i--){
st[i][0]=h[i];
for(int j=1;(i+(1<<j)-1)<=n;j++)
st[i][j]=max(st[i][j-1],st[i+(1<<j-1)][j-1]);
}
}
inline int ask(int l,int r){
if(l<1) l=1;
if(r>n) r=n;
int len=r-l+1,k=log_2[len];
return max(st[l][k],st[r-(1<<k)+1][k]);
}
inline void init(){
scanf("%d",&n);
k=sqrt(n);
int l=(int)(k);
if(k>l) l++;
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
for(int i=1;i<=l;i++){
s[i].l=sqr(i-1)+1;
s[i].r=sqr(i);
for(int j=s[i].l;j<=s[i].r;j++)
sq[j]=i;
}
ini_st();
for(int i=1;i<=n;i++,ans=0){
for(int j=sq[i-1];j>=1;j--){
ans=max(ans,ask(i-s[j].r,i-s[j].l)+j);
}
for(int j=sq[n-i];j>=1;j--){
ans=max(ans,ask(i+s[j].l,i+s[j].r)+j);
}
printf("%d\n",max(0,ans-h[i]));
}
}
int main(){
freopen("light.in","r",stdin);
freopen("light.out","w",stdout);
init();
fclose(stdin);
fclose(stdout);
return 0;
}

[JSOI2016]灯塔的更多相关文章

  1. [bzoj4850][Jsoi2016]灯塔

    来自FallDream的博客,未经允许,请勿转载,谢谢. JSOI的国境线上有N一座连续的山峰,其中第ii座的高度是hi??.为了简单起见,我们认为这N座山峰排成了连续一条 直线.如果在第ii座山峰上 ...

  2. [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)

    第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...

  3. BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)

    即对每个i最大化hj-hi+sqrt(|i-j|).先把绝对值去掉,正反各做一次即可.注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i ...

  4. [BZOJ 4850][Jsoi2016]灯塔

    传送门 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=a;i<=b;++i) ...

  5. DP学习记录Ⅱ

    DP学习记录Ⅰ 以下为 DP 的优化. 人脑优化DP P5664 Emiya 家今天的饭 正难则反.考虑计算不合法方案.一个方案不合法一定存在一个主食,使得该主食在多于一半的方法中出现. 枚举这个&q ...

  6. 「JSOI2016」灯塔

    「JSOI2016」灯塔 传送门 我们先只计算照亮左边的灯塔的最低高度,计算右边的类同,然后只要取 \(\max\) 就好了. 那么稍微整理一下式子:\(p_i \ge h_j - h_i + \sq ...

  7. loj2074 「JSOI2016」灯塔

    loj 题面错的--去bzoj上看吧qwq 观察到 \(\sqrt{|i-j|}\) 的取值只有 \(\sqrt{n}\) 级别个,然后就很显然了,rmq. #include <iostream ...

  8. ACM/ICPC 之 快排+归并排序-记录顺序对(TSH OJ-LightHouse(灯塔))

    TsingHua OJ 上不能使用<algorithm>头文件,因此需要手写快排(刚开始写的时候自己就出了很多问题....),另外本题需要在给横坐标排序后,需要记录纵坐标的顺序对的数量,因 ...

  9. 【Tsinghua OJ】灯塔(LightHouse)问题

    描述 海上有许多灯塔,为过路船只照明.从平面上看,海域范围是[1, 10^8] × [1, 10^8] . (图一) 如图一所示,每个灯塔都配有一盏探照灯,照亮其东北.西南两个对顶的直角区域.探照灯的 ...

随机推荐

  1. base64文件上传的问题

    package com.zhicall.media.util; import java.io.FileInputStream; import java.io.FileOutputStream; imp ...

  2. 为什么要提倡"Design Pattern"呢? 开闭原则 系统设计时,注意对扩展开放,对修改闭合。

    [亲身经历] 无规矩不成方圆 设计模式 - 搜狗百科 https://baike.sogou.com/v123729.htm?fromTitle=设计模式 为什么要提倡"Design Pat ...

  3. app开发制作会难吗?app开发好学吗?

    前面我们讲到了app是什么,APP是运行在智能手机的第三方应用程序,可以满足用户的不同需求.那么app开发制作会难吗?这个与产品的复杂度有很大的关系,复杂度包括业务逻辑多不多,业务模块多不多等,对于玩 ...

  4. 001-maven下载jar后缀为lastUpdated问题

    问题简述 Maven在下载仓库中找不到相应资源时,网络中断等,会生成一个.lastUpdated为后缀的文件.如果这个文件存在,那么即使换一个有资源的仓库后,Maven依然不会去下载新资源. 解决方案 ...

  5. HAProxy的状态页

    启用基于程序编译时默认设置的统计报告,不能用于"frontend"区段,只要没有另外的其他设定,他们就会使用如下的配置stats uri    : /haproxy$statsst ...

  6. CoreThink主题开发(七)使用H-ui开发博客主题之新闻资讯正文页面

    感谢H-ui.感谢CoreThink! 效果图: 后台发文章有上传附件.封面的功能,但是前台代码中有,不能显示,去除了,前台页面还有社会化分享,百度的,页面也不显示. Blog/Cms/Index/d ...

  7. 剑指offer 面试63题

    面试63题 题目:股票的最大利润 题:假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可获得的最大利润是多少?例如,一只股票在某些时间节点的价格为{9,11,8,5,7,12,16, ...

  8. python面向对象之 封装(Day25)

    封装: 隐藏对象的属性和实现细节,仅对外提供公共访问方式 好处:1.将变化隔离 2.便于使用 3.提高复用性 4.提高安全性 封装原则: 1.将不需要对外提供的内容隐藏起来 2.把属性都隐藏,提供公共 ...

  9. 统计easyui datagrid某列之和显示在对应列下面

    项目需求要在表格下面加一行统计求和的,结果网上搜寻了一堆,要么说的不详细,高深大牛们的见解:要么实现不了,搜寻老半天修改出一个可以用的,做一下学习记录,新手菜鸟,欢迎指正和新解决方案. 最终效果图: ...

  10. DP专题(不定期更新)

    1.UVa 11584 Partitioning by Palindromes(字符串区间dp) 题意:给出一个字符串,划分为若干字串,保证每个字串都是回文串,同时划分数目最小. 思路:dp[i]表示 ...