Description

在一些一对一游戏的比赛(如下棋、乒乓球和羽毛球的单打)中,我们经常会遇到A胜过B,B胜过C而C又胜过A的有趣情况,不妨形象的称之为剪刀石头布情况。有的时候,无聊的人们会津津乐道于统计有多少这样的剪刀石头布情况发生,即有多少对无序三元组(A, B, C),满足其中的一个人在比赛中赢了另一个人,另一个人赢了第三个人而第三个人又胜过了第一个人。注意这里无序的意思是说三元组中元素的顺序并不重要,将(A, B, C)、(A, C, B)、(B, A, C)、(B, C, A)、(C, A, B)和(C, B, A)视为相同的情况。
N个人参加一场这样的游戏的比赛,赛程规定任意两个人之间都要进行一场比赛:这样总共有场比赛。比赛已经进行了一部分,我们想知道在极端情况下,比赛结束后最多会发生多少剪刀石头布情况。即给出已经发生的比赛结果,而你可以任意安排剩下的比赛的结果,以得到尽量多的剪刀石头布情况。

Input

输入文件的第1行是一个整数N,表示参加比赛的人数。
之后是一个NN列的数字矩阵:一共N行,每行N列,数字间用空格隔开。
在第(i+1)行的第j列的数字如果是1,则表示i在已经发生的比赛中赢了j;该数字若是0,则表示在已经发生的比赛中i败于j;该数字是2,表示ij之间的比赛尚未发生。数字矩阵对角线上的数字,即第(i+1)行第i列的数字都是0,它们仅仅是占位符号,没有任何意义。
输入文件保证合法,不会发生矛盾,当ij时,第(i+1)行第j列和第(j+1)行第i列的两个数字要么都是2,要么一个是0一个是1。

Output

输出文件的第1行是一个整数,表示在你安排的比赛结果中,出现了多少剪刀石头布情况。
输出文件的第2行开始有一个和输入文件中格式相同的NN列的数字矩阵。第(i+1)行第j个数字描述了ij之间的比赛结果,1表示i赢了j,0表示i负于j,与输入矩阵不同的是,在这个矩阵中没有表示比赛尚未进行的数字2;对角线上的数字都是0。输出矩阵要保证合法,不能发生矛盾。
 
PS:这题太牛叉了值得一做……
 
代码(896MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXV = MAXN * MAXN;
const int MAXE = MAXN * MAXV;
const int INF = 0x7f7f7f7f; struct ZWK_FLOW {
int head[MAXV], dis[MAXV];
int to[MAXE], next[MAXE], flow[MAXE], cost[MAXE];
int n, ecnt, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c, int w) {
to[ecnt] = v; flow[ecnt] = c; cost[ecnt] = w; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; flow[ecnt] = ; cost[ecnt] = -w; next[ecnt] = head[v]; head[v] = ecnt++;
//printf("%d %d %d %d\n", u, v, c, w);
} void spfa() {
for(int i = ; i <= n; ++i) dis[i] = INF;
priority_queue<pair<int, int> > que;
dis[st] = ; que.push(make_pair(, st));
while(!que.empty()) {
int u = que.top().second, d = -que.top().first; que.pop();
if(d != dis[u]) continue;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && dis[v] > d + cost[p]) {
dis[v] = d + cost[p];
que.push(make_pair(-dis[v], v));
}
}
}
int t = dis[ed];
for(int i = ; i <= n; ++i) dis[i] = t - dis[i];
} int minCost, maxFlow;
bool vis[MAXV]; int add_flow(int u, int aug) {
if(u == ed) {
maxFlow += aug;
minCost += dis[st] * aug;
return aug;
}
vis[u] = true;
int now = aug;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && !vis[v] && dis[u] == dis[v] + cost[p]) {
int t = add_flow(v, min(now, flow[p]));
flow[p] -= t;
flow[p ^ ] += t;
now -= t;
if(!now) break;
}
}
return aug - now;
} bool modify_label() {
int d = INF;
for(int u = ; u <= n; ++u) if(vis[u]) {
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && !vis[v]) d = min(d, dis[v] + cost[p] - dis[u]);
}
}
if(d == INF) return false;
for(int i = ; i <= n; ++i) if(vis[i]) dis[i] += d;
return true;
} int min_cost_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
minCost = maxFlow = ;
spfa();
while(true) {
while(true) {
for(int i = ; i <= n; ++i) vis[i] = false;
if(!add_flow(st, INF)) break;
}
if(!modify_label()) break;
}
return minCost;
}
} G; int n, m;
int mat[MAXN][MAXN], ans[MAXN][MAXN]; inline int encode(int i, int j) {
if(i > j) swap(i, j);
return i * n + j;
} int main() {
scanf("%d", &n);
for(int i = ; i <= n; ++i) for(int j = ; j <= n; ++j) scanf("%d", &mat[i][j]);
m = n * n;
int ss = n + m + , tt = ss + ;
G.init();
int sum = n * (n - ) * (n - ) / ;
for(int i = ; i <= n; ++i) {
for(int j = , tmp = ; j < n; ++j, tmp += ) G.add_edge(ss, i, , tmp);
for(int j = ; j <= n; ++j) if(mat[i][j] != )
ans[i][j] = G.ecnt, G.add_edge(i, encode(i, j), , );
}
for(int i = ; i <= m; ++i) G.add_edge(i + n, tt, , );
int x = G.min_cost_flow(ss, tt, tt);
printf("%d\n", sum - (x - n * (n - ) / ) / );
for(int i = ; i <= n; ++i) {
for(int j = ; j <= n; ++j) {
if(j != ) printf(" ");
if(mat[i][j] != ) printf("%d", mat[i][j]);
else {
if(G.flow[ans[i][j]] == ) printf("");
else printf("");
}
}
puts("");
}
}

BZOJ 2597 剪刀石头布(最小费用最大流)(WC2007)的更多相关文章

  1. bzoj 2597 剪刀石头布 —— 拆边费用流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 不合法的三个人之间的关系就是一个人赢了两次: 记 \( deg[i] \) 表示第 \ ...

  2. 【BZOJ-2597】剪刀石头布 最小费用最大流

    2597: [Wc2007]剪刀石头布 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1016  Solved:  ...

  3. BZOJ2597 [Wc2007]剪刀石头布(最小费用最大流)

    题目大概是说n个人两两进行比赛,问如何安排几场比赛的输赢使得A胜B,B胜C,C胜A这种剪刀石头布的三元组最多. 这题好神. 首先,三元组总共有$C_n^3$个 然后考虑最小化不满足剪刀石头布条件的三元 ...

  4. BZOJ 2668 [cqoi2012]交换棋子 | 最小费用最大流

    传送门 BZOJ 2668 题解 同时分别限制流入和流出次数,所以把一个点拆成三个:入点in(x).中间点mi(x).出点ou(x). 如果一个格子x在初始状态是黑点,则连(S, mi(x), 1, ...

  5. BZOJ 3876 [AHOI/JSOI2014]支线剧情 (最小费用可行流)

    题面:洛谷传送门 BZOJ传送门 题目大意:给你一张有向无环图,边有边权,让我们用任意条从1号点开始的路径覆盖这张图,需要保证覆盖完成后图内所有边都被覆盖至少一次,求覆盖路径总长度的最小值 最小费用可 ...

  6. 【BZOJ】1221: [HNOI2001] 软件开发(最小费用最大流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1221 先吐槽一下,数组依旧开小了RE:在spfa中用了memset和<queue>的版本 ...

  7. BZOJ 1927 星际竞速(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1927 题意:一个图,n个点.对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号 ...

  8. BZOJ 1061 志愿者招募(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...

  9. bzoj 1877 [SDOI2009]晨跑(最小费用最大流)

    Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十 ...

  10. bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Statu ...

随机推荐

  1. 课时15.DTD文档声明下(了解)

    W3C的官方网站是W3School,我们可以去官方网站查询DTD文档声明. HTML4.01       Strict  非常严谨的 如果你写了这个DTD文档声明,你就不能写如下样式: <fon ...

  2. 几个常用的 Git 高级命令

    Git 是一款开源优秀的版本管理工具,它最初由 Linus Torvalds 等人开发,用于管理 Linux Kernel 的版本研发.相关的书籍和教程网上琳琅满目,它们多数都详细的介绍其基本的使用和 ...

  3. [ZJOI2006]超级麻将(动规)

    题目描述 很多人都知道玩麻将,当然也有人不知道,呵呵,不要紧,我在这里简要地介绍一下麻将规则: 普通麻将有砣.索.万三种类型的牌,每种牌有1~9个数字,其中相同的牌每个有四张,例如1砣~9砣,1索~9 ...

  4. mysql like 变量

    Mysql: select * from 表名 where 字段 like concat('%',变量,'%');  

  5. Spring、Spring Boot、Spring Frame、Spring MVC的区别

    Spring框架就像一个厂商,其下有很多产品,如Spring Boot.Spring Frame.Spring Cloud等等. Spring Boot用于快速.方便.简单的搭建一个Spring项目. ...

  6. android Volley+Gson的使用

    听说Volley框架非常好用,今天试了一下post请求,果然如此,因为我传的是json获取的也是json所以就写了一种关于json的请求,其实其他的代码都差不多.首先要先创建一个全局的变量,请求入队列 ...

  7. chrome debugger 调试

    debugger 使用chrome调试时,html页面的js代码中可能不好打断点(因为在jvm中才会有代码) 我一开始是故意在需要断点的后面或前面写个错的alert,通过jvm找到此处,然后在需要的地 ...

  8. 09 mongoDB基础(进阶)

    mongoDB基础 阶段一.认识mongodb 1.mongodb 组织数据的基本形式 MongoDB————>数据库————>集合————>文档 mysql:表:行和列:字段 运用 ...

  9. ThinkPHP中的pathinfo模式和URL重写

    语文一直不太好,要我怎么解释这个pathinfo模式还真不知道怎么说,那就先来一段代码说下pathinfo模式吧 http://serverName/appName/module/action/id/ ...

  10. 博弈dp 以I Love this Game! POJ - 1678 为例

    写在前面的话 知识基础:一些基础的博弈论的方法,动态规划的一些知识 前言:博弈论就是一些关于策略或者游戏之间的最优解,动态规划就是对于一些状态之间转移的一些递推式(or 递归),dp分为很多很多种,比 ...