传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1099

Lottery

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4319    Accepted Submission(s): 1921

Problem Description
Eddy's company publishes a kind of lottery.This set of lottery which are numbered 1 to n, and a set of one of each is required for a prize .With one number per lottery, how many lottery on average are required to make a complete set of n coupons?
 
Input
Input consists of a sequence of lines each containing a single positive integer n, 1<=n<=22, giving the size of the set of coupons.
 
Output
For each input line, output the average number of lottery required to collect the complete set of n coupons. If the answer is an integer number, output the number. If the answer is not integer, then output the integer part of the answer followed by a space and then by the proper fraction in the format shown below. The fractional part should be irreducible. There should be no trailing spaces in any line of ouput.
 
Sample Input
2
5
17
 
Sample Output
3
5
11 --
12
340463
58 ------
720720
 
Author
eddy
 
题目意思:
 
每次发行n张彩票,要买多少张才能集齐。
 
分析:
假如发行1张,买1次就集齐了。所以买1张。
假如发行2张,第一次买的序号是1,第二次买中剩下那张的概率是1/2,所以要买两张才能买到第二张,所以要买3张才能才能集齐。
假如发行3张,第一次发的序号是1,要买1张,第二次买中剩下的两张之一的概率是2/3,所以要买3/2张,第三次买剩中最后一张的概率是1/3,所以要买3张,所以要买5+1/2张。
假如发行n张,第一次买中没买过的概率是1,第二次是n-1/n,第三次是n-2/n,第n次是1/n,
而对应需要买的张数是第一次买1张,第二次买n/n-1张,第三次买n/n-2,第n次买n张,所以求的是n/n,n/n-1,……1/n的和。
 
所以就是求:n(1+1/2+1/3+......+1/n)
 
举个例子,当n=5时,第一张有用的概率为1,买一张就行了,第二张有用的概率为4/5,所以买5/4张彩票能买上对你有用的,一次类推,sum=1+5/4+5/3+5/2+5/1=11…5/12,
 
需要注意的就是格式问题:(这个很重要,w了几次)
结果是整数的话,直接输出整数
结果不是整数的话,分为两部分输出,一个整数,和一个真分数
格式请参考代码,讲起来太麻烦了。。。
code:
 
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define max_v 25
struct node
{
LL molecule;//分子
LL Denominator;//分母
};
LL gcd(LL a,LL b)//最大公约数
{
if(b==)
return a;
return gcd(b,a%b);
}
LL lcm(LL a,LL b)//最小公倍数
{
return a/gcd(a,b)*b;
}
LL numlen(LL x)//数字长度
{
LL c=;
while(x)
{
x=x/;
c++;
}
return c;
}
node f(int n)
{
node p;
p.molecule=;
p.Denominator=;
if(n==)
return p;
for(LL i=;i<=n;i++)
{
LL x=lcm(i,p.Denominator);
p.molecule=p.molecule*(x/p.Denominator)+(x/i);
p.Denominator=x;
LL y=gcd(p.Denominator,p.molecule);
p.Denominator=p.Denominator/y;
p.molecule=p.molecule/y;
// printf("fz=%I64d fm=%I64d 最小公倍数=%I64d\n",p.molecule,p.Denominator,x);
}
p.molecule=p.molecule*n;
LL y=gcd(p.Denominator,p.molecule);
p.Denominator=p.Denominator/y;
p.molecule=p.molecule/y; return p;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
node p=f(n);
if(p.molecule%p.Denominator==)
printf("%I64d\n",p.molecule/p.Denominator);
else
{
LL x=p.molecule/p.Denominator;
p.molecule=p.molecule-(x*p.Denominator);
LL y=gcd(p.Denominator,p.molecule);
p.Denominator=p.Denominator/y;
p.molecule=p.molecule/y; int l1=numlen(x);
int l2=numlen(p.Denominator);
for(int i=;i<=l1;i++)
printf(" "); printf("%I64d\n",p.molecule);
printf("%I64d ",x);
for(int i=;i<=l2;i++)
printf("-");
printf("\n");
for(int i=;i<=l1;i++)
printf(" ");
printf("%I64d\n",p.Denominator);
}
}
return ;
}

HDU 1099 Lottery (求数学期望)的更多相关文章

  1. hdu 1099 Lottery

    这是我第一次写博客,作为一个ACMer,经常进别人的博客,所以自己也想写写博客. HDU 1099 Lottery Time Limit: 2000/1000 MS (Java/Others)     ...

  2. HDU 4465 Candy (数学期望)

    题意:有两个盒子各有n个糖(n<=2*105),每天随机选1个(概率分别为p,1-p),然后吃掉一颗糖.直到有一天打开盒子一看,这个盒子没有糖了.输入n,p,求此时另一个盒子里糖的个数的数学期望 ...

  3. HDU - 1099 - Lottery - 概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...

  4. HDU 4336 Card Collector 数学期望(容斥原理)

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意简单,直接用容斥原理即可 AC代码: #include <iostream> ...

  5. [CF912D]Fishes - 求数学期望,乱搞

    D. Fishes time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...

  6. uva 10828 高斯消元求数学期望

    Back to Kernighan-RitchieInput: Standard Input Output: Standard Output You must have heard the name ...

  7. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  8. hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)

    Problem Description   You live in a village but work in another village. You decided to follow the s ...

  9. HDU 5984 数学期望

    对长为L的棒子随机取一点分割两部分,抛弃左边一部分,重复过程,直到长度小于d,问操作次数的期望. 区域赛的题,比较基础的概率论,我记得教材上有道很像的题,对1/len积分,$ln(L)-ln(d)+1 ...

随机推荐

  1. BNU 28887——A Simple Tree Problem——————【将多子树转化成线段树+区间更新】

    A Simple Tree Problem Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on ZJU. O ...

  2. 文档碎片DocumentFragment

    文档碎片是什么? 参考标准的描述,DocumentFragment是一个轻量级的文档对象,能够提取部分文档的树或创建一个新的文档片段,换句话说有文档缓存的作用. createDocumentFragm ...

  3. struts2 :Unable to load configuration. ……struts-default.xml:46:178异常解决

    这个问题是缺少jar包 除了ognl-2.6.11.jar,struts2-core-2.1.6.jar,xwork-2.1.2.jar,commons-logging-1.0.4.jar外, 还需要 ...

  4. python unix时间戳

    这是第一次用着python感到怒了,从datetime转化到timestamp数值居然没有直接的函数 直接获取当前时间戳倒是方便: import time timestamp = time.time( ...

  5. 利用函数回调获取setInterval中返回的值

    我们都知道,定时器里面想返回值如果你用return根本没作用,那么怎么拿到定时器所返回的值呢, 现在只需要利用回调函数,给主函数传一个函数类型的参数callback,然后把想要返回的num再传给cal ...

  6. 保存及读取keras模型参数

    转自:http://blog.csdn.net/u010159842/article/details/54407745,感谢分享~ 你可以使用model.save(filepath)将Keras模型和 ...

  7. bean 的生命周期

    就是在new ClassPathXMLApplicationContext 的时候是否就直接在内存中new 出来,如果是对象比较的情景下 ,为了提高程序初始化的速度,可以用用. 如果设置为 true ...

  8. 面试题之-------使用TCP/UDP协议的常见协议及端口号

    使用TCP协议的常见端口主要有以下几种: (1) FTP:定义了文件传输协议,使用21端口.常说某某计算机开了FTP服务便是启动了文件传输服务.下载文件,上传主页,都要用到FTP服务. (2) Tel ...

  9. JS教程之实现加载图片时百分比进度

    思路:思路其实很简单,ajax执行时,会生成一个event对象,其中会包含要加载的文件的大小和当前已经加载完成部分的大小,通过这两个值即可计算出百分比 事件介绍onprogress 当浏览器正在加载媒 ...

  10. ThinkPHP5.0版本的优势在于:

    更灵活的路由: 依赖注入: 请求缓存: 更强大的查询语法: 引入了请求/响应对象: 路由地址反解生成: 增强的模型功能: API开发友好: 改进的异常机制: 远程调试支持: 单元测试支持: 命令行工具 ...