【题解】POJ1845 Sumdiv(乘法逆元+约数和)
POJ1845:http://poj.org/problem?id=1845
思路:
AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm)
根据算数基本定理可以得约数之和sum=(1+a1+a12+...+a1n1)*(1+a2+a22+...+a2n2)*...*(1+am+am2+...+amnm) mod 9901
对于每个(1+ai+ai2+...+aini) mod 9901=(ai(ni+1)-1)/(ai-1) mod 9901 (等比数列前n项目和)分母可用快速幂算出
因为9901是质数,只要ai-1不是9901的倍数就只要计算ai-1的乘法逆元inv(用费马小定理),再乘(ai(ni+1)-1) 直接算出ans
PS:若ai-1是9901的倍数 此时乘法逆元不存在 但是ai mod 9901=1 所以1+ai+ai2+...+aini=1+1+...+1=ni+1
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
#define mod 9901
int a,b,m,ans=;
int p[],c[];//p是质数 c是指数
void divide(int n)
{
m=;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
p[++m]=i;
c[m]=;
while(n%i==)
{
n/=i;
c[m]++;
}
}
}
if(n>)
{
p[++m]=n;
c[m]=;
}
}
int quickpow(int a,long long b)
{
int c=;
for(;b;b>>=)
{
if(b&)
c=(long long)c*a%mod;
a=(long long)a*a%mod;
}
return c;
}
int main()
{
cin>>a>>b;
divide(a);//分解A的质因数 b到后面在乘上
for(int i=;i<=m;i++)
{
if((p[i]-)%mod==)//特判当ai-1是9901的倍数 乘法逆元不存在
{
ans=((long long)b*c[i]+)%mod*ans%mod;
continue;
}
int x=quickpow(p[i],(long long)b*c[i]+);//快速幂求分母
x=(x-+mod)%mod;
int y=p[i]-;
y=quickpow(y,mod-);//根据费马小定理求乘法逆元
ans=(long long)ans*x%mod*y%mod;
}
cout<<ans;
}
【题解】POJ1845 Sumdiv(乘法逆元+约数和)的更多相关文章
- 题解 poj1845 Sumdiv (数论) (分治)
传送门 大意:求A^B的所有因子之和,并对其取模 9901再输出 (这题又调了半天,把n和项数弄混了QAQ) 根据算数基本定理:A=(p1^k1)*(p2^k2)*(p3^k3)*...*(pn^kn ...
- 【ZOJ 3609】Modular Inverse 最小乘法逆元
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
- POJ1845 Sumdiv 数学?逆元?
当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c ...
- 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...
- 题解 P3811 【【模板】乘法逆元】
P3811 [模板]乘法逆元 一个刚学数论的萌新,总结了一下这题的大部分做法 //一.费马小定理+快速幂 O(nlogn) 64分 #include<cstdio> using names ...
- poj1845 Sumdiv
poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
随机推荐
- unity向量计算
参考:https://www.cnblogs.com/wywnet/p/4790665.html 上面的文章讲的很重要 下面是我自己实现的一个例子 一直一个向量,一个夹角,求另一个向量 按P键改变夹角 ...
- CentOS 下 安装 JDK8
1.下载 在 /usr/local 目录下创建目录 java # cd /usr/local # mkdir java 登录网址:http://www.oracle.com/technetwork/j ...
- javascript中for in与in的用法
1.For...In 声明用于对数组或者对象的属性进行循环/迭代操作. 对于数组 ,迭代出来的是数组元 素,对于对象 ,迭代出来的是对象的属性: var x var mycars = new Arra ...
- 项目搭建系列之二:SpringMVC框架下配置MyBatis
1.什么是MyBatis? MyBatis是一个支持普通SQL查询,存储过程和高级映射的优秀持久层框架.MyBatis消除了几乎所有的JDBC代码和参数的手工设置以及对结果集的检索封装.MyBatis ...
- 初学Hadoop之计算TF-IDF值
1.词频 TF(term frequency)词频,就是该分词在该文档中出现的频率,算法是:(该分词在该文档出现的次数)/(该文档分词的总数),这个值越大表示这个词越重要,即权重就越大. 例如:一篇文 ...
- 2017年10月21日 数据库基础&三大范式
1. 数据库里面常用 int 整型nvarchar 字符串float 小数型decimal(,) 小数型money 小数型datetime 时间类型 ima ...
- Mac下抓包工具Charles4.0下载及使用
Charles是一款运行在你自己计算机上的web代理工具,可以有效地获取http通信信息,主要用于网页的开发和调试等. 安装 以下为来自史蒂芬周的博客的Charles 4.0 Mac破解版 下载地址: ...
- centos解决The path "" is not a valid path to the 3.2.0-4-amd64 kernel headers.问题
我的机子炸了,然后我就得重新装我的虚拟机,再然后我就想去弄好我的共享文件夹安装vmtools,安装的时候出现了一个问题,我忘记以前是怎么解决的,又困扰了我好久 Searching for a vali ...
- vba SpecialCells(Type,Value) 参数说明
Range.SpecialCells 方法可以返回一个 Range 对象,该对象代表与指定类型和值匹配的所有单元格. 其语法如下: 表达式.SpecialCells(Type,Value) 其Type ...
- HTML表格相关元素
<table> 标签定义 HTML 表格.简单的 HTML 表格由 table 元素以及一个或多个 tr.th 或 td 元素组成.tr 元素定义表格行,th 元素定义表头,td 元素定义 ...