官网简介:

http://www.numpy.org/

ndarry基本属性

  • ndarry是Numpy中的N维数组对象(N dimentional arrya,ndarray)
  • ndarry中所有的元素必须是相同类型的
  data = [[1,2,3],[4,5,6]]
a = np.arry(data)

基本属性:

  1. ndim:一个衡量数组维度的对象 (a.ndim --> 2)
  2. shape:一个衡量各个维度大小的元祖 (a.shape --> (2,3))
  3. dtype:一个用于说明数组数据类型的对象 (a.dtype --> int64)

ndarray数组的数据类型

  1. Numpy中的数据类型有
int8、uint8、int16、unit16 、int32、unit32、int64、unit64、
float16, float32, float64, float128, complex64, complex128, complex256, bool, object,
string, unicode.

数据类型的转换

  • [x] astype
data = np.array(['1.23','4.56','7.89'])
res = data.astype(float)
  • [x] dtype
data = np.array([1,2,3], dtype=np.float64) #默认int64 改成float64d

索引与切片

索引(Indexing)

  1. 一维数组:a[0] a[1] a[2]
  2. 二维数组:a[0,0] a[0,1] a[0,2]
  3. axis 0 --> 列
  4. axis 1 --> 行

切片(Slicing)

  1. ndarray的切片是原始数组的视图,做修改时,数据不会被复制,而是直接反映到

    源数据上。如果想要得到切片的副本,则需要使用copy(),例如 arr[2:3].copy()。

丰富的索引和切片方式

  1. 基本索引和切片方式
import numpy as np
arr1d = np.arange(10)
arr2d = np.array([[1,2,3],[4,5,6]])
arr3d = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) [:]、 [x] 、[x : y]、 [x,y]、 [x][y] 、[x:]、 [:y] 、[:y, x:]、 [x,:y]、 [:,:y] (比如x=1,y=2)
  1. 布尔型索引
  • 布尔型索引可以帮助我们筛选出符合条件的数据(类似Excel中的Vlookup函数)
GDP_Percent = np.array([7.90,7.80,7.30, 6.90,6.70])
Year = np.array([2012,2013,2014,2015,2016])
print(Year[GDP_Percent>7]) [2012 2013 2014]
  1. 花式索引(Fancy Indexing)
  • 利用整数数组进行索引,index为默认的以0开始的整数形式。
  • fancy indexing概念上很简单:即指传递索引数组以便一次得到多个数组元素。使用fancy indexing时要特别注意的一点是返回数组的shape反映的是索引数组的shape而不是被索引的原数组的shape。
简单情况:一维数组
data= np.random.randn(8,4) print(data)
print(data[[2,4,0,6]])
print(data[[-6,-4,-8,-2]]) 高级用法:多维数组
X = np.arange(12).reshape((3,4))
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]]) row = np.array([0, 1, 2])
col = np.array([2, 1, 3])
X[row,col]
array([2, 5, 11]) #第一个元素2代表X[0, 2],在索引中将列向量和行向量结合可以得到二维结果 X[row[:, np.newaxis], col] # 行向量中的每个值与每个列向量配对(用了numpy的broadcasting)
row[:, np.newaxis]
array([[0],
[1],
[2]]) array([[ 2, 1, 3],
[ 6, 5, 7],
[10, 9, 11]])

numpy基础知识的更多相关文章

  1. NumPy 基础知识·翻译完成

    原文:Numpy Essentials 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. 在线阅读 ApacheCN 面试求职交流群 7241 ...

  2. NumPy基础知识图谱

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载.该图谱只是NumPy的基 ...

  3. 【Numpy】python机器学习包Numpy基础知识学习

    一.安装:在之前的博客中已经写过:http://www.cnblogs.com/puyangsky/p/4763234.html 二.python数组切片知识: python中序列类有list.str ...

  4. python科学计算库的numpy基础知识,完美抽象多维数组(原创)

    #导入科学计算库 #起别名避免重名 import numpy as np #小技巧:从外往内看==从左往右看 从内往外看==从右往左看 #打印版本号 print(np.version.version) ...

  5. Numpy 基础知识

    1.使用ipython --pylab 自动加载 Numpy.Scipy.Matplotlib模块. 创建数组a = arange(10) b = arange(10,dtype='f')c = ar ...

  6. NumPy基础知识:数组和矢量计算

    NumPy 的ndarray:一种多维数组对象 该对象是一个快速且灵活的大数据容器,可以利用这种数组对整个数据进行科学计算,语法跟标量元素之间的计算一样. 创建ndarray的方法: array函数: ...

  7. Python——Numpy基础知识(一)

    一.Numpy的引入 1.标准的Python 中用列表(list)保存一组值,可以当作数组使用.但由于列表的元素可以是任何对象,因此列表中保存的是对象的指针.对于数值运算来说,这种结构显然比较浪费内存 ...

  8. numpy基础知识练习

    # 1.导入numpy模块 # 2.创建一个大小为10的空向量 # 3.创建一个大小为10的空向量,但是第五个值为1 # 4.创建一个10-49的ndarray数组 # 5.创建一个3x3的矩阵,其值 ...

  9. tensorflow笔记(一)之基础知识

    tensorflow笔记(一)之基础知识 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7399701.html 前言 这篇no ...

随机推荐

  1. 【 VSFTPD 】ftp 客户端问题

    网络环境: 两个独立的内网环境,前端都有路由和防火墙的管控.要在这两个独立的内网使用ftp通过互联网进行通信. 首先,ftp server 服务端口默认修改为:2100 数据端口修改为:21000 将 ...

  2. 第六篇:远程过程调用(RPC)

    Remote procedure call (RPC) 客户端接口 有关RPC的说明 回调队列 消息属性 关联的ID ( Correlation Id ) 整合 在第二篇教程中,我们学习了如何使用工作 ...

  3. 关于 log4j.additivity的说明

    log4j.additivity是 子Logger 是否继承 父Logger 的 输出源(appender) 的标志位.具体说,默认情况下 子Logger 会继承 父Logger 的appender, ...

  4. 新电脑配置 git 同步github账户

    1.下载安装git 2.初始化 仓库文件夹 git init 3.生成公钥ssh-keygen -t rsa -C "youremail@example.com"4.github ...

  5. codeforces-455A

    题目连接:http://codeforces.com/contest/455/problem/A A. Boredom time limit per test 1 second memory limi ...

  6. HDU 2647 Reward【反向拓扑排序】

    Reward Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. Typora

    Typora BB in front 如果你是一个佛(lan)系(duo),内心文艺的程序员,并且你对其他Markdown编辑器的使用效果感觉不是很好的话,可以来了解一下该软件Typora. What ...

  8. 简单DP【p3399】丝绸之路

    Background 张骞于公元前138年曾历尽艰险出使过西域.加强了汉朝与西域各国的友好往来.从那以后,一队队骆驼商队在这漫长的商贸大道上行进,他们越过崇山峻岭,将中国的先进技术带向中亚.西亚和欧洲 ...

  9. [BZOJ 1794] Linear Garden

    Link: BZOJ 1794 传送门 Solution: IOI2008官方题解:传送门 要求序号,其实就是算字典序比其小的序列个数 从而使用数位$dp$的思想来解题,关键在于维护序列要$balan ...

  10. [CF392E]Deleting Substrings

    “unexpected, right?”大概可以翻译成“没想到吧!” 题意:给两个序列$w_{1\cdots n}$和$v_{1\cdots n}$,你可以多次删除$w$的子串$w_{l\cdots ...