[洛谷P2568]GCD
题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y=1}^n[(x,y)\in \rm prime]$($(a,b)$为$a,b$的$gcd$)
题解:可以用莫比乌斯反演来做,同这道题,只需要把$m$改成$n$就行了
卡点:无
C++ Code:(莫比乌斯反演)
#include <cstdio>
#include <cstring>
#define maxn 10000010
using namespace std;
int n;
int miu[maxn], plist[maxn], ptot;
int g[maxn];
bool isp[maxn];
void sieve(int n) {
memset(isp, true, sizeof isp);
miu[1] = 1;
for (int i = 2; i < n; i++) {
if (isp[i]) plist[ptot++] = i, miu[i] = -1;
for (int j = 0; j < ptot && i * plist[j] < n; j++) {
int tmp = i * plist[j];
isp[tmp] = false;
if (i % plist[j] == 0) {
miu[tmp] = 0;
break;
}
miu[tmp] = -miu[i];
}
}
for (int i = 0; i < ptot; i++) {
for (int j = 1; j * plist[i] < n; j++)
g[j * plist[i]] += miu[j];
}
for (int i = 2; i <= n; i++) g[i] += g[i - 1];
}
inline int min(int a, int b) {return a < b ? a : b;}
long long solve(int n, int m) {
long long ans = 0;
int i, j;
int tmp = min(n, m);
for (i = 1; i <= tmp; i = j + 1) {
j = min(n / (n / i), m / (m / i));
ans += 1ll * (n / i) * (m / i) * (g[j] - g[i - 1]);
}
return ans;
}
int main() {
sieve(maxn);
scanf("%d", &n);
printf("%lld\n", solve(n, n));
return 0;
}
题解:也可以用也可以用$\phi$函数来做。
$$
若(x,y)==p(p\in \rm prime)
\Rightarrow \big(\dfrac{x}{p},\dfrac{y}{p}\big)==1
$$
线性筛出每个数的$\varphi$,再前缀和一下就行了
注意,若$x<y$$(x,y)==p$和$(y,x)==p$是两种不同的方案,但只会在算$y$时被加上,所以答案要乘二,但是当$x==y$时答案会多算一遍,所以要减去质数的个数
卡点:算$\varphi$时没开$long\;long$
C++ Code:(phi函数)
#include <cstdio>
#include <cstring>
#define maxn 10000010
using namespace std;
int n;
bool isp[maxn];
int plist[maxn], ptot;
long long phi[maxn], ans;
void sieve(int n) {
memset(isp, true, sizeof isp);
phi[1] = 1;
for (int i = 2; i <= n; i++) {
if (isp[i]) {
plist[ptot++] = i;
phi[i] = i - 1;
}
for (int j = 0; j < ptot && i * plist[j] <= n; j++) {
int tmp = i * plist[j];
isp[tmp] = false;
if (i % plist[j] == 0) {
phi[tmp] = phi[i] * plist[j];
break;
}
phi[tmp] = phi[i] * phi[plist[j]];
}
}
}
int main() {
scanf("%d", &n);
sieve(n);
for (int i = 2; i <= n; i++) phi[i] += phi[i - 1];
for (int i = 0; i < ptot; i++) ans += phi[n / plist[i]] << 1;
printf("%lld\n", ans - ptot);
return 0;
}
[洛谷P2568]GCD的更多相关文章
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- 洛谷 P2568 GCD
https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x, ...
- 洛谷 - P2568 - GCD - 欧拉函数
https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...
- 洛谷 P2568 GCD(莫比乌斯反演)
题意:$\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)\epsilon prime]$. 对于这类题一般就是枚举gcd,可得: =$\sum_{d\epsilon prim ...
- 洛谷 P2568 GCD 题解
原题链接 庆祝一下:数论紫题达成成就! 第一道数论紫题.写个题解庆祝一下吧. 简要题意:求 \[\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] \] 其中 \(p\) ...
- 洛谷P2568 GCD(莫比乌斯反演)
传送门 这题和p2257一样……不过是n和m相同而已…… 所以虽然正解是欧拉函数然而直接改改就行了所以懒得再码一遍了2333 不过这题卡空间,记得mu开short,vis开bool //minamot ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
随机推荐
- Hue联合(hdfs yarn hive) 后续......................
1.启动hdfs,yarn start-all.sh 2.启动hive $ bin/hive $ bin/hive --service metastore & $ bin/hive --ser ...
- 最简单的bootloader的编写
目标:写出bootloader的第一阶段代码和第二阶段代码,并测试. 最简单的bootloader的编写步骤: 1. 初始化硬件:关看门狗.设置时钟.设置SDRAM.初始化NAND FLASH2. 如 ...
- Python基本图形绘制
turtle的一个画布空间最小单位是像素 turtle的绘制窗体:turtle.stup(width,heigth,startx,starty) 四个参数中后两个可选 turtle空间坐标体系:tur ...
- Python全栈day 02
Python全栈day 02 一.循环语句 while 用法 num = 1 while num <= 10: print(num) num += 1 # 循环打印输出1-10 while el ...
- vuls安装记录
第一步安装go环境apt-get install golang-go(显示出错,go版本apt安装太低,apt-get purge golang-go卸载后手动安装,必须1.8.3以上) 还需将/us ...
- 动态规划(DP)算法
参考https://blog.csdn.net/libosbo/article/details/80038549 动态规划是求解决策过程最优化的数学方法.利用各个阶段之间的关系,逐个求解,最终求得全局 ...
- 「LibreOJ#516」DP 一般看规律
首先对于序列上一点,它对答案的贡献只有与它的前驱和后驱(前提颜色相同)构成的点对, 于是想到用set维护每个颜色,修改操作就是将2个set暴力合并(小的向大的合并),每次插入时更新答案即可 颜色数要离 ...
- .Net 面试题 汇总(三)
101.ASP.net的身份验证方式有哪些?分别是什么原理? 答:Windwos(默认)用IIS... From(窗体)用帐户 Passport(密钥) 102.在.net中,配件的意思是? 答:程序 ...
- HBase 通过myeclipce脚本来获取固定columns(获取列簇中的列及对应的value值)
第一步:关联Jar包 1. 配置hadoop-env.sh文件添加Hbase关联jar包 /opt/modules/hadoop-2.5.0-cdh5.3.6/etc/hadoop下编辑hadoop- ...
- Xshell入门教程介绍
免费软件 Xshell和 Xftp 都是 NetSarang 出品的优秀网络管理.安全传输工具.Xshell 是一个免费的安全终端仿真器,可以作为 SSH.TELNET 或 RLOGIN 的终端模拟, ...